Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophile dithiane

After the umpolung of an aldehyde group by conversion to a l,3 dithian-2-ide anion (p. 17) it can be combined with a carbonyl group (D. Seebach, 1969, 1979 B.-T. GrO-bel, 1977 B). Analogous reagents are tosylmethyl isocyanide (TosMIC), which can be applied in the nucleophilic formylation of ketones (O.H. Oldenziel, 1974), and dichloromethyl lithium (G. KObrich, 1969 P. Blumbergs, 1972 H. Taguchi, 1973),... [Pg.51]

The possibility of activating the indole nucleus to nucleophilic substitution has been realized by formation of chromium tricarbonyl complexes. For example, the complex from TV-methylindole (215) undergoes nucleophilic substitution with 2-lithio-l,3-dithiane to give a product (216) which can be transformed into l-methylindole-7-carbaldehyde (217) (78CC1076). [Pg.83]

The conjugate base of 1,3-dithiane has proven valuable in synthetic applications as a nucleophile (Part B, Chapter 13). The anion is generated by deprotonation using n-butyllithium ... [Pg.423]

Besides 1,3-oxathianes, the 1,3-dithiane 1-oxide moiety can be used for directing the nucleophilic addition of an organometallic reagent to a carbonyl group in a diastereoselective manner. The addition of methylmagnesium iodide to the 2-acyl-l,3-dithiane 1-oxide 23A leads exclusively to the diastereomer which is formed by Re-side attack. On the other hand, addition... [Pg.113]

Other carbanionic groups, such as acetylide ions, and ions derived from a-methylpyridines have also been used as nucleophiles. A particularly useful nucleophile is the methylsulfinyl carbanion (CH3SOCHJ), the conjugate base of DMSO, since the P-keto sulfoxide produced can easily be reduced to a methyl ketone (p. 549). The methylsulfonyl carbanion (CH3SO2CH2 ), the conjugate base of dimethyl sulfone, behaves similarly, and the product can be similarly reduced. Certain carboxylic esters, acyl halides, and DMF acylate 1,3-dithianes (see 10-10. )2008 Qxj(jatjye hydrolysis with NBS or NCS, a-keto aldehydes or a-... [Pg.572]

Sulfur compounds are useful as nucleophilic acyl equivalents. The most common reagents of this type are 1,3-dithianes, which on lithiation provide a nucleophilic acyl equivalent. In dithianes an umpolung is achieved on the basis of the carbanion-stabilizing ability of the sulfur substituents. The lithio derivative is a reactive nucleophile toward alkyl halides and carbonyl compounds. 11... [Pg.1168]

In Step C a dithiane anion was used as a nucleophilic acyl anion equivalent to introduce the C(10)-C(13) isobutyl group. [Pg.1181]

The following is an example for a sequential one-pot epoxide formation/nucleophilic opening process using (S)-4-(benzyloxy)-l,2-butanediol, iV-(p-tohienesulfonyl)-imida-zole, and 2-lithio-l,3-dithiane ... [Pg.374]

Dithiane as a nucleophile, serving as a masked carbonyl equivalent. This is an example of umpolung. [Pg.166]

The enantioselective lithiation of anisolechromium tricarbonyl was used by Schmalz and Schellhaas in a route towards the natural product (+)-ptilocaulin . In situ hthi-ation and silylation of 410 with ent-h M gave ewf-411 in an optimized 91% ee (reaction carried ont at — 100°C over 10 min, see Scheme 169). A second, substrate-directed lithiation with BuLi alone, formation of the copper derivative and a quench with crotyl bromide gave 420. The planar chirality and reactivity of the chromium complex was then exploited in a nucleophilic addition of dithiane, which generated ptilocaulin precnrsor 421 (Scheme 172). The stereochemistry of componnd 421 has also been used to direct dearomatizing additions, yielding other classes of enones. ... [Pg.589]

Some alkyl and aryl-thio compounds are known, most being prepared by nucleophilic displacement of halo or nitro groups. Examples of furazans fused to dithianes have also been described bis-furazan (75) can be prepared either by dehydration of the tetraoxime or by reaction of potassium thiocyanate with dinitrofurazan <95MI 405-03). [Pg.249]

Umpolung The reversal of polarity of the carbonyl carbon atom is termed umpolung (German for polarity reversal). Normally the carbonyl carbon atom of an aldehyde (or a ketone) is partially positive i.e., electrophilic and therefore it reacts with nucleophiles. When the aldehyde is converted to a dithiane by reaction with 1,3-propanedithiol and reacted with butyl lithium the same carbon now becomes negatively charged to react with electrophiles. This reversed polarity of the carbonyl carbon is termed umpolung which increases the versatility of the carbonyl group in synthesis. The sulphur atoms stabilize... [Pg.249]

Dithiin and 1,3-Dithiane Derivatives Thermal and Photochemical Reactions Reactions with Electrophiles Reactions with Nucleophiles... [Pg.740]

The diastereoselectivities in the nucleophilic addition reactions of l,3-dioxane-5-ones 37 and l,3-dithiane-5-ones 38 were studied by employing two newly available theoretical tools, the exterior frontier orbital electron (EFOE) density of the 7tc=o -orbitals and the 7t-plane-divided accessible space (PDAS) as quantitative measures of the 7t-facial steric effects <1999CRV1243, 1999CC621, 1999CL1161, 2000H(52)1435, 2001HAC358>. The two parameters predict correctly the experimentally observed stereochemical reversal of 37 and 38 (R = Ph see Table 1) in particular, the PDAS values for both substrates clearly show the opposite steric environment about the carbonyl carbon atom of these heterocyclic ketones and prove sizeable ground-state conformational differences to be responsible for the observed reversed facial stereoselection. [Pg.745]

Optically active 2-alkylidene-l,3-dithiane 1,3-dioxides have been prepared as chiral Michael-type acceptors. It was shown that these compounds react under nucleophilic epoxidation conditions to give diastereoselectively the epoxides. Other heteroatom nucleophiles reacted as well <1998JOC7128, 1999PS(153/4)337>. It was further demonstrated that enolates were also effective nucleophiles for the stereoselective addition to 2-alkylidene-l,3-dithiane 1,3-dioxides (Scheme 48) <20050L4013>. [Pg.795]

Radical cations of 2-alkylidene-l,3-dithianes can be generated electrochemically by anodic oxidation using a reticulated vitreous carbon (RVC) anode <2002TL7159>. These intermediates readily react with nucleophiles at C-1. Upon removal of the second electron, the sulfur-stabilized cations were trapped by nucleophilic solvents, such as MeOH, to furnish the final cycloaddition products. Hydroxy groups <20010L1729> and secondary amides <2005OL3553> were employed as O-nucleophiles and enol ethers as C-nucleophiles (Scheme 50) <2002JA10101>. [Pg.796]

As expected, 2-halo-l,3-dithianes react with nucleophiles under Sn conditions. Suitable nucleophiles are enamines <2002TL9517, 2004T6931> and phenols <1997MOL7>. The reaction with EtOC(S)S K, followed by oxidation, provided a xanthate which generated a 1,3-dithiane 1-oxide radical upon treatment with Bu3SnH (Scheme 69) <2004T7781>. An efficient one-carbon radical precursor has also been obtained by addition of 2,2,6,6-tetramethyl-piperidine-l-oxyl (TEMPO) to 2-lithio-l,3-dithiane. The reactivity of this compound has been demonstrated <2005S1389>. [Pg.806]

The chemistry of l,3-dithian-2-ylidene ethyl carbene has been studied. This carbene was prepared by the reaction of the parent hydrazone with NaH (Equation 57). It reacted with nucleophiles in situ to give a variety of trapping products <1996J(P1)2773>. [Pg.812]


See other pages where Nucleophile dithiane is mentioned: [Pg.537]    [Pg.69]    [Pg.386]    [Pg.392]    [Pg.418]    [Pg.537]    [Pg.69]    [Pg.386]    [Pg.392]    [Pg.418]    [Pg.79]    [Pg.791]    [Pg.177]    [Pg.296]    [Pg.251]    [Pg.253]    [Pg.254]    [Pg.704]    [Pg.338]    [Pg.61]    [Pg.556]    [Pg.30]    [Pg.498]    [Pg.501]    [Pg.509]    [Pg.338]    [Pg.1199]    [Pg.92]    [Pg.683]    [Pg.705]    [Pg.794]    [Pg.802]    [Pg.822]    [Pg.889]    [Pg.890]   
See also in sourсe #XX -- [ Pg.418 ]




SEARCH



1,3-Dithian

1,3-dithiane

Dithians

© 2024 chempedia.info