Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distribution coefficient plate theory

This equation, although originating from the plate theory, must again be considered as largely empirical when employed for TLC. This is because, in its derivation, the distribution coefficient of the solute between the two phases is considered constant throughout the development process. In practice, due to the nature of the development as already discussed for TLC, the distribution coefficient does not remain constant and, thus, the expression for column efficiency must be considered, at best, only approximate. The same errors would be involved if the equation was used to calculate the efficiency of a GC column when the solute was eluted by temperature programming or in LC where the solute was eluted by gradient elution. If the solute could be eluted by a pure solvent such as n-heptane on a plate that had been presaturated with the solvent vapor, then the distribution coefficient would remain sensibly constant over the development process. Under such circumstances the efficiency value would be more accurate and more likely to represent a true plate efficiency. [Pg.451]

The concept of plate theory was originally proposed for the performance of distillation columns (12). However, Martin and Synge (13) first applied the plate theory to partition chromatography. The theory assumes that the column is divided into a number of zones called theoretical plates. One determines the zone thickness or height equivalent to a theoretical plate (HETP) by assuming that there is perfect equilibrium between the gas and liquid phases within each plate. The resulting behavior of the plate column is calculated on the assumption that the distribution coefficient remains unaffected by the presence of other... [Pg.62]

The Plate Theory shows that retention volume of a solute is directly proportional to its distribution coefficient between the two phases. Classical thermodynamics provides an expression that relates the equilibrium constant which, in the case of chromatographic retention, will be the distribution coefficient to the change in standard free energy of the solute, when transferring from one phase to the other. [Pg.1613]

As mentioned earher, the plate theory has played a role in the development of chromatography. The concept of "plate" was originally proposed as a measmement of the performance of distillation processes. It is based upon the assumption that the column is divided into a number of zones called theoretical plates, that are treated as if there exists a perfect equilibrium between the gas and the Hquid phases within each plate. This assumption imphes that the distribution coefficient remains the same fi-om one plate to another plate, and is not affected by other sample components, and that the distribution isotherm is hnear. However, experimental evidences show that this is not true. Plate theory disregards that chromatography is a dynamic process of mass transfer, and it reveals httle about the factors affecting the values of the theoretical plate number. In principle, once a sample has been introduced, it enters the GC column as a narrow-width "band" or "zone" of its composite molecules. On the column, the band is further broadened by interaction of components with the stationary phase which retains some components more than others. Increasing... [Pg.70]

The "plate" theory treats the column as a series of Juxtaposed "equivalent theoretical plates" in each of which a separation factor between two species corresponding to the ratio of their distribution coefficients is achieved. The distribution coefficient is a ratio of concentrations in the two phase-s for a substance. [Pg.21]


See other pages where Distribution coefficient plate theory is mentioned: [Pg.7]    [Pg.19]    [Pg.45]    [Pg.22]    [Pg.20]    [Pg.1709]    [Pg.87]    [Pg.275]    [Pg.52]    [Pg.2406]    [Pg.17]    [Pg.29]    [Pg.55]    [Pg.1637]    [Pg.87]    [Pg.367]    [Pg.396]    [Pg.535]    [Pg.265]    [Pg.367]    [Pg.652]    [Pg.517]   
See also in sourсe #XX -- [ Pg.80 , Pg.81 , Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 , Pg.87 ]




SEARCH



Distribution coefficient

Plate Theory

© 2024 chempedia.info