Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation constants complex ions

Hexa.cya.no Complexes. Ferrocyanide [13408-63 ] (hexakiscyanoferrate-(4—)), (Fe(CN) ) , is formed by reaction of iron(II) salts with excess aqueous cyanide. The reaction results in the release of 360 kJ/mol (86 kcal/mol) of heat. The thermodynamic stabiUty of the anion accounts for the success of the original method of synthesis, fusing nitrogenous animal residues (blood, horn, hides, etc) with iron and potassium carbonate. Chemical or electrolytic oxidation of the complex ion affords ferricyanide [13408-62-3] (hexakiscyanoferrate(3—)), [Fe(CN)g] , which has a formation constant that is larger by a factor of 10. However, hexakiscyanoferrate(3—) caimot be prepared by direct reaction of iron(III) and cyanide because significant amounts of iron(III) hydroxide also form. Hexacyanoferrate(4—) is quite inert and is nontoxic. In contrast, hexacyanoferrate(3—) is toxic because it is more labile and cyanide dissociates readily. Both complexes Hberate HCN upon addition of acids. [Pg.434]

Applying the Law of Mass Action, we obtain the dissociation constant of the complex ion ... [Pg.50]

The magnitude of the dissociation constant clearly shows that only a very small silver ion concentration is produced by the dissociation of the complex ion. [Pg.51]

The stability of complex ions varies within very wide limits. It is quantitatively expressed by means of the stability constant. The more stable the complex, the greater is the stability constant, i.e. the smaller is the tendency of the complex ion to dissociate into its constituent ions. When the complex ion is very stable, e.g. the hexacyanoferrate(II) ion [Fe(CN)6]4", the ordinary ionic reactions of the components are not shown. [Pg.51]

The formation of a single complex species rather than the stepwise production of such species will clearly simplify complexometric titrations and facilitate the detection of end points. Schwarzenbach2 realised that the acetate ion is able to form acetato complexes of low stability with nearly all polyvalent cations, and that if this property could be reinforced by the chelate effect, then much stronger complexes would be formed by most metal cations. He found that the aminopolycarboxylic acids are excellent complexing agents the most important of these is 1,2-diaminoethanetetra-aceticacid (ethylenediaminetetra-acetic acid). The formula (I) is preferred to (II), since it has been shown from measurements of the dissociation constants that two hydrogen atoms are probably held in the form of zwitterions. The values of pK are respectively pK, = 2.0, pK2 = 2.7,... [Pg.55]

The factor at can be calculated from the known dissociation constants of EDTA, and since the proportions of the various ionic species derived from EDTA will be dependent upon the pH of the solution, a will also vary with pH a plot of log a against pH shows a variation of logoc = 18 at pH = 1 to loga = 0 at pH = 12 such a curve is very useful for dealing with calculations of apparent stability constants. Thus, for example, from Table 2.4, log K of the EDTA complex of the Pb2+ ion is 18.0 and from a graph of log a against pH, it is found that at a pH of 5.0, log a = 7. Hence from equation (30), at a pH of 5.0 the lead-EDTA complex has an apparent stability constant given by ... [Pg.59]

If the reaction at the indicator electrode involves complex ions, satisfactory polarograms can be obtained only if the dissociation of the complex ion is very rapid as compared with the diffusion rate, so that the concentration of the simple ion is maintained constant at the electrode interface. Consider the general case of the dissociation of a complex ion ... [Pg.601]

Diphenylcarbazide as adsorption indicator, 358 as colorimetric reagent, 687 Diphenylthiocarbazone see Dithizone Direct reading emission spectrometer 775 Dispensers (liquid) 84 Displacement titrations 278 borate ion with a strong acid, 278 carbonate ion with a strong acid, 278 choice of indicators for, 279, 280 Dissociation (ionisation) constant 23, 31 calculations involving, 34 D. of for a complex ion, (v) 602 for an indicator, (s) 718 of polyprotic acids, 33 values for acids and bases in water, (T) 832 true or thermodynamic, 23 Distribution coefficient 162, 195 and per cent extraction, 165 Distribution ratio 162 Dithiol 693, 695, 697 Dithizone 171, 178... [Pg.861]

A case similar to the slow, practically irreversible inhibition of jack bean a-D-mannosidase by swainsonine is represented by the interaction of castanospermine with isomaltase and rat-intestinal sucrase. Whereas the association constants for the formation of the enzyme-inhibitor complex were similar to those of other slow-binding glycosidase inhibitors (6.5 10 and 0.3 10 M s for sucrase and isomaltase, respectively), the dissociation constant of the enzyme-inhibitor complex was extremely low (3.6 10 s for sucrase) or could not be measured at all (isomaltase), resulting in a virtually irreversible inhibition. Danzin and Ehrhard discussed the strong binding of castanospermine in terms of the similarity of the protonated inhibitor to a D-glucosyl oxocarbenium ion transition-state, but were unable to give an explanation for the extremely slow dissociation of the enzyme-inhibitor complex. [Pg.344]

Several theoretical models, such as the ion-pair model [342,360,361,363,380], the dyneuaic ion-exchange model [342,362,363,375] and the electrostatic model [342,369,381-386] have been proposed to describe retention in reversed-phase IPC. The electrostatic model is the most versatile and enjoys the most support but is mathematically complex euid not very intuitive. The ion-pair model emd dynamic ion-exchange model are easier to manipulate and more instructive but are restricted to a narrow range of experimental conditions for trtilch they might reasonably be applied. The ion-pair model assumes that an ion pair is formed in the mobile phase prior to the sorption of the ion-pair complex into the stationary phase. The solute capacity factor is governed by the equilibrium constants for ion-pair formation in the mobile phase, extraction of the ion-pair complex into the stationary phase, and the dissociation of th p ion-pair complex in the... [Pg.726]

Fuger, J. (1958). Ion exchange behavior and dissociation constants of americium, curium and californium complexes with ethylenediaminetetraacetic acid, J. Inorg. Nucl. Chem. 5, 332. [Pg.84]

To conduct meaningful mechanistic and kinetic studies in alcohol media reliable and simple measurement and control of the solution jjpH is essential. Potentiometric titration is the method of choice for obtaining acid dissociation constants or metal ion complex stability constants and in favorable cases the speciation of mixtures of metal-ion-containing complexes in solution can be proposed.20 Titrations in non-aqueous solvents are not nearly as widely reported as those in aqueous media, particularly in cases with metal ions21 and determination of pH in a non-aqueous solvent referenced to that solvent is complicated due to the lack of a way to relate the electrode EMF readings to absolute jjpH (see footnote and ref. 6) so non-aqueous solvents are generally inconvenient to use22 for detailed studies of reaction mechanisms where pH control is required. [Pg.276]

Metal-complex stability is also related to the basic strength of the ligand entity. For a series of 1 2 complexes of the bidentate naphthylazophenol ligand (5.64) with copper(II) ion, the acidic dissociation constants (pKa) are linearly related to the stability constants (log K1 2), the more acidic groups forming the less stable complexes. Thus where X = N02 in structure 5.64 then pKa = 8.1 and log K1 2 = 17.2, and where X = OCH3 then pKa = 8.5... [Pg.263]

In a similar investigation of the tautomeric tridentate ligand 2 -hydroxyphenylazo-2-naphthol (5.65 in Scheme 5.17), the first and second acidic dissociation constants (pKa) related to the two hydroxy groups in the parent structure (X = H) were found to be 11.0 and 13.75 respectively. On introduction of an electron-withdrawing substituent (X) the first dissociation constant decreased from 11.0 to 10.55 (X = Cl) or 7.67 (X = N02). The stability constants (log K1 1) of the derived 1 1 complexes were dependent on the metal ion introduced [46], being particularly high for nickel(n) at 19.6 and copper(II) at 23.3. [Pg.264]

Nucleophilic substitution on methyl / -nitrobenzenesulfonate in CH2CI2 has been studied with a series of chloride salts with different structures and solvations BU4NCI, PPNCl [bis(triphenylphosphoranylidene)ammonium chloride], KCl complexed by 18-crown-6 or Kryptofix 2,2,2, and for comparison PPNBr. ° Rate constants and activation parameters are in accordance with an S 2 mechanism. The results were treated by the Acree equation. There are two reaction paths the first, involving the chloride ion, has the same rate for all the salts, whereas the second slower path, involving the ion pair, has a rate related to the dissociation constant of the salt. [Pg.342]


See other pages where Dissociation constants complex ions is mentioned: [Pg.365]    [Pg.1036]    [Pg.66]    [Pg.508]    [Pg.222]    [Pg.300]    [Pg.771]    [Pg.294]    [Pg.100]    [Pg.164]    [Pg.94]    [Pg.118]    [Pg.232]    [Pg.152]    [Pg.721]    [Pg.723]    [Pg.732]    [Pg.154]    [Pg.41]    [Pg.360]    [Pg.238]    [Pg.120]    [Pg.71]    [Pg.873]    [Pg.485]    [Pg.66]    [Pg.175]    [Pg.23]    [Pg.24]    [Pg.79]    [Pg.76]    [Pg.244]    [Pg.175]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 ]




SEARCH



Complexes constants

Complexes dissociation constant

Complexes, dissociation

Complexing constants

Complexity constant

Dissociation, Ions

© 2024 chempedia.info