Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Displacement vector space

The coefficients p. are chosen so that, on a quadratic surface, the interpolated gradient becomes orthogonal to all Aq. This condition is equivalent to minimizing the energy in the space spaimed by the displacement vectors. In the quadratic case, a further simplification can be made as it can be shown that all p. with the... [Pg.2337]

In terms of these vectors a real space displacement vector u can be expressed as... [Pg.164]

For this algorithm, one can prove that detailed balance is guaranteed and the exact average of any configuration-dependent property over the accessible space is obtained. Two key issues determine the detailed balance. The first is the fact that the trial probability to pick the displacement vector Dfc to go from the fcth to the Zth e-sphere equals the trial probability to pick the displacement vector D fc for the reverse step. The second issue is that the trial probability for a local MC step that moves the walker from a point inside an e-sphere to a point outside that sphere is the same as for the reverse move i.e., (1 - / ) times what it would be in a walk restricted to local moves. [Pg.292]

As discussed in Sect. 3.1, a gel obeys the diffusion equations given in Eq. (3.5). The time-space correlation of a gel network is expressed in terms of the displacement vector as follows... [Pg.20]

Normal mode coordinates are linear combinations of the atomic displacements (x, yt z,, which are the components of a set of vectors Q in a 3/V-dimcnsional vector space called... [Pg.162]

The room-temperature crystal structure of (NH3)K3C60 was first determined by Rosseinsky et al. [17]. Ammoniation of K3C60 leads to an orthorhombic distortion of the fee structure with one K+ and one NH3 per octahedral site. The C60 units are orientationally ordered with their two-fold axes aligned with the unit cell vectors (space group Fmmm), while K+ and NH3 are oppositely displaced from the site centre along the [110] direction and the K+-NH3 pairs are randomly oriented along one of four K+-NH3 directions. [Pg.138]

The positions of the displaced vectors x l and x 2 in composition space are shown in Fig. 25. The displaced vector x l does not lie in the plane of the reaction triangle and cannot be a straight line reaction path. This will be true for all choices of Xo(r) and Xi. For a displaced vector x, - to be in the plane of the reaction triangle, the sum of the elements of u(0) must be the same as the sum of the elements of the vector Xo(r) used to move X,. This can only occur if the sum of the elements of the vector x< is zero as is the case for characteristic vectors with X 5 0 but not for characteristic vectors with X = 0 since these vectors contribute to the mass of the system. [Pg.279]

In the n-dimensional hypervolume that describes the placement and trajectory of the ecosystem, it is possible to compare the positions of systems at a specified time. This displacement can be measured by computing the distance from the systems, and this displacement vector can be regarded as the displacement of these systems in space. The displacement vectors can be easily calculated and compared. Using the data generated by Giddings et al. (1980) in a series of classic experiments comparing results of the impacts of synthetic oil on aquarium and small-pond multispecies systems, Johnson was able to plot dose-response curves using the mean separation of the replicate systems. These plots are very reminiscent of dose-response curves from typical acute and chronic toxicity tests. [Pg.329]

The full scattering function (6) should be represented in five dimensions. Partial landscape views in three dimensions are shown in Fig. 6 [Ikeda 2002], Energy transfer values correspond to proton modes and the momentum transfer vector spans various planes in reciprocal space, (Qi, Qj), such as Qk - 0, with i, j or k = x, y or z. The maps of intensity are graphic views of the orientation of the displacement vector for each mode. Visual examination confirms that vibrational coordinates remain unchanged in the various excited states and Hr- a,. nz are relevant quantum numbers. [Pg.509]

Here D(r, f) is the displacement vector, q is free charge density, Eq is the free space permittivity ... [Pg.214]

Vectors are represented by symbols such as a, b,... and their respective magnitudes are given by a, A, ..., or just a, b,... An alternative notation, OP, is sometimes used when we wish to describe a displacement in space between two points (in this case, points O and P). [Pg.85]

The subtraction of two vectors can be thought of as the addition of two vectors that differ in their sign. If we think of this in terms of displacements in space, then the first vector corresponds to a displacement from point P to point Q, for example, whereas a second identical vector with opposite sign will direct us back to point P from point Q ... [Pg.87]

FIGURE 3.2 Cross-section of two-dimensional potential energy surfaces corresponding to the minimum on the intersection curve of the paraboloids of the potential functions of the isomers (point JQ. The area of the maximal overlap ofthe vibrational functions ofthe isomers is shaded, r and s are the vector radii of point A in the (61,62) and (6i>6l) coordinate systems, respectively. B is the displacement vector of the minima of the potential wells of the isomers in the normal coordinate space. [Pg.40]

To take into account this feature in the molecular models we can make an introducing correction (broadening) of the potential function dependent on the degree of anharmonic transformation of each vibration mode. The value of the corresponding elements of the displacement vector b would seem to be a natural criterion for the selection of the correction magnitude. However, the position of the area of the maximal overlap of the vibrational wave functions in the case of multidimensional displacement turns out to be a more adequate characteristic. This area is characterized by the point X (the top of the potential barrier, see Fig. 3.2) with coordinates x, (x ) in space of the normalized normal coordinates. [Pg.44]

When choosing normal lattice modes at the F-point as a basis in the space of the displacement vectors of sublattices, we obtain renormalized constants of coupling with macroscopic deformation (eq. 105) in the following form ... [Pg.337]


See other pages where Displacement vector space is mentioned: [Pg.163]    [Pg.163]    [Pg.163]    [Pg.163]    [Pg.255]    [Pg.292]    [Pg.164]    [Pg.37]    [Pg.14]    [Pg.395]    [Pg.398]    [Pg.260]    [Pg.12]    [Pg.158]    [Pg.61]    [Pg.55]    [Pg.66]    [Pg.479]    [Pg.346]    [Pg.115]    [Pg.170]    [Pg.76]    [Pg.196]    [Pg.35]    [Pg.139]    [Pg.426]    [Pg.428]    [Pg.61]    [Pg.139]    [Pg.1233]    [Pg.1234]    [Pg.130]    [Pg.60]    [Pg.143]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Displacement space

Vector displacement

Vector space

© 2024 chempedia.info