Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole interactive forces

Such process is known as physical adsorption. Intermolecular forces similar to Van der Waals or dipole interaction forces operate in physical adsorption. Therefore physical adsorption does not require activation energy and occurs very quickly. In particular, at small adsorbed substance concentrations in the solution near the surface we have C, and at high concentrations - 1. [Pg.110]

Dipole-dipole and induction forces in solvents or solutions decrease with increasing molecular mass of the solvent [14.43]. Since this effect is not reflected in the dipole moment of the solvent, a polarizability parameter P is used to describe the dipole dipole interaction forces [14.34]. This parameter can be calculated from the ionization potential IP, polarizability a, and dipole moment fi [14.44] ... [Pg.285]

The solvating strength of plasticizer depends on its chemical structure as it relates to its physical properties. Application of Hansen solubility parameters (64 = dispersion interactive forces, 6p = dipole interactive forces, and 61, = hydrogen bonding forces) is the most successful method of predicting interaction between plasticizers and PVC. Table 3.2 shows values of these parameters for PVC and selected plasticizers. [Pg.49]

Note the r dependence of these tenns the charge-indiiced-dipole interaction varies as r, the dipole-indiiced-dipole as and the quadnipole-mduced-dipole as In general, the interaction between a pennanent 2 -pole moment and an induced I -pole moment varies as + L + l) gQ enough r, only the leading tenn is important, with higher tenns increasing in importance as r decreases. The induction forces are clearly nonadditive because a third molecule will induce another set of miiltipole moments in tlie first two, and these will then interact. Induction forces are almost never dominant since dispersion is usually more important. [Pg.191]

The raie gas atoms reveal through their deviation from ideal gas behavior that electrostatics alone cannot account for all non-bonded interactions, because all multipole moments are zero. Therefore, no dipole-dipole or dipole-induced dipole interactions are possible. Van der Waals first described the forces that give rise to such deviations from the expected behavior. This type of interaction between two atoms can be formulated by a Lennaid-Jones [12-6] function Eq. (27)). [Pg.346]

Electrostatic terms other than the simple charge interactions above are commonly included in molecular mechanics calculations. particularly dipole-dipole interactions. More recently, second-order electrostatic interactions like those describing polarizability have been added to some force fields. [Pg.179]

Nonbonded interactions are the forces be tween atoms that aren t bonded to one another they may be either attractive or repulsive It often happens that the shape of a molecule may cause two atoms to be close in space even though they are sep arated from each other by many bonds Induced dipole/induced dipole interactions make van der Waals forces in alkanes weakly attractive at most distances but when two atoms are closer to each other than the sum of their van der Waals radii nuclear-nuclear and electron-electron repulsive forces between them dominate the fvan derwaais term The resulting destabilization is called van der Waals strain... [Pg.111]

Polymer alloys are physical mixtures of structurally different homopolymers or copolymers. The mixture is held together by secondary intermolecular forces such as dipole interaction, hydrogen bonding, or van der Waals forces. [Pg.1014]

The term polymer is derived from the Greek words poly and meros, meaning many parts. We noted in the last section that the existence of these parts was acknowledged before the nature of the interaction which held them together was known. Today we realize that ordinary covalent bonds are the intramolecular forces which keep the polymer molecule intact. In addition, the usual type of intermolecular forces—hydrogen bonds, dipole-dipole interactions, and London forces—hold assemblies of these molecules together in the bulk state. The only thing that is remarkable about these molecules is their size, but that feature is remarkable indeed. [Pg.3]

Forces of Adsorption. Adsorption may be classified as chemisorption or physical adsorption, depending on the nature of the surface forces. In physical adsorption the forces are relatively weak, involving mainly van der Waals (induced dipole—induced dipole) interactions, supplemented in many cases by electrostatic contributions from field gradient—dipole or —quadmpole interactions. By contrast, in chemisorption there is significant electron transfer, equivalent to the formation of a chemical bond between the sorbate and the soHd surface. Such interactions are both stronger and more specific than the forces of physical adsorption and are obviously limited to monolayer coverage. The differences in the general features of physical and chemisorption systems (Table 1) can be understood on the basis of this difference in the nature of the surface forces. [Pg.251]

Secondary Bonding. The atoms in a polymer molecule are held together by primary covalent bonds. Linear and branched chains are held together by secondary bonds hydrogen bonds, dipole interactions, and dispersion or van der Waal s forces. By copolymerization with minor amounts of acryhc (CH2=CHCOOH) or methacrylic acid followed by neutralization, ionic bonding can also be introduced between chains. Such polymers are known as ionomers (qv). [Pg.431]

Attractive and Repulsive Forces. The force that causes small particles to stick together after colliding is van der Waals attraction. There are three van der Waals forces (/) Keesom-van der Waals, due to dipole—dipole interactions that have higher probabiUty of attractive orientations than nonattractive (2) Debye-van der Waals, due to dipole-induced dipole interactions (ie, uneven charge distribution is induced in a nonpolar material) and (J) London dispersion forces, which occur between two nonpolar substances. [Pg.148]

The interaction forces which account for the value of a in this equation arise from tire size, the molecular vibration frequencies and dipole moments of the molecules. The factor b is only related to the molecular volumes. The molar volume of a gas at one atmosphere pressure is 22.414 ImoD at 273 K, and this volume increases according to Gay-Lussac s law with increasing... [Pg.112]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

The dipoles are shown interacting directly as would be expected. Nevertheless, it must be emphasized that behind the dipole-dipole interactions will be dispersive interactions from the random charge fluctuations that continuously take place on both molecules. In the example given above, the net molecular interaction will be a combination of both dispersive interactions from the fluctuating random charges and polar interactions from forces between the two dipoles. Examples of substances that contain permanent dipoles and can exhibit polar interactions with other molecules are alcohols, esters, ethers, amines, amides, nitriles, etc. [Pg.67]

The induced counter-dipole can act in a similar manner to a permanent dipole and the electric forces between the two dipoles (permanent and induced) result in strong polar interactions. Typically, polarizable compounds are the aromatic hydrocarbons examples of their separation using induced dipole interactions to affect retention and selectivity will be given later. Dipole-induced dipole interaction is depicted in Figure 12. Just as dipole-dipole interactions occur coincidentally with dispersive interactions, so are dipole-induced dipole interactions accompanied by dispersive interactions. It follows that using an n-alkane stationary phase, aromatic... [Pg.68]


See other pages where Dipole interactive forces is mentioned: [Pg.480]    [Pg.538]    [Pg.74]    [Pg.925]    [Pg.928]    [Pg.30]    [Pg.401]    [Pg.27]    [Pg.480]    [Pg.538]    [Pg.74]    [Pg.925]    [Pg.928]    [Pg.30]    [Pg.401]    [Pg.27]    [Pg.638]    [Pg.190]    [Pg.806]    [Pg.2255]    [Pg.3006]    [Pg.591]    [Pg.106]    [Pg.182]    [Pg.82]    [Pg.33]    [Pg.342]    [Pg.220]    [Pg.220]    [Pg.138]    [Pg.12]    [Pg.79]    [Pg.277]    [Pg.129]    [Pg.63]    [Pg.66]    [Pg.84]    [Pg.4]   
See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Dipol interaction forces

Dipole forces

Dipole interacting

Dipole interactions

Force dipol

Interaction force

© 2024 chempedia.info