Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-dipolar cycloaddition cycloadducts

Asymmetric dipolar cycloaddition of azomethine imines derived from diazoal-kane-pyridazine cycloadducts 98JHC1187. [Pg.260]

The Lewis acid-catalyzed 1,3-dipolar cycloaddition reaction of nitrones to a,/ -un-saturated carbonyl compound in the presence of Lewis acids has been investigated by Tanaka et al. [31]. Ab-initio calculations were performed in a model reaction of the simple nitrone 18 reacting with acrolein 1 to give the two cycloadducts 19 and 20 (Scheme 8.7). [Pg.322]

A family of interesting polycychc systems 106 related to pyrrolidines was obtained in a one-pot double intermolecular 1,3-dipolar cycloaddition, irradiating derivatives of o-allyl-sahcylaldehydes with microwaves in toluene for 10 min in presence of the TEA salt of glycine esters [71]. A very similar approach was previously proposed by Bashiardes and co-workers to obtain a one-pot multicomponent synthesis of benzopyrano-pyrrolidines 107 and pyrrole products 108 (Scheme 37). The latter cycloadducts were obtained when o-propargylic benzaldehydes were utihzed instead of o-allyhc benzalde-hydes, followed by in situ oxidation [72]. [Pg.234]

Dipolar cycloaddition reactions of thioisoraunchnones (l,3-thiazolium-4-olates) have not been as extensively studied as those of munchnones (l,3-oxazolium-5-olates) despite offering rapid access to novel heterocyclic compounds. The cycloaddition of the thioisomunchnone (52) with trans-P-nitrostyrene results in the formation of two diastereoisomeric 4,5-dihydrothiophenes (53) and (54) via transient cycloadducts. These cycloadducts then undergo rearrangement under the reaction conditions <96JOC3738>. [Pg.180]

Pyrroles can also be prepared by 1,3-dipolar cycloaddition of C-trimethylsilyl amides such as 1497 with dimethyl acetylenedicarboxylate in boihng toluene to give, via the azomethinimide 1498, 78% 1499 [45]. On employing a threefold excess of dimethyl acetylenedicarboxylate the cycloadduct 1499 is obtained in nearly quantitative yield [45] (Scheme 9.26). [Pg.228]

Giomi s group developed a domino process for the synthesis of spiro tricyclic nitroso acetals using a, 3-unsaturated nitro compounds 4-163 and ethyl vinyl ether to give the nitrone 4-164, which underwent a second 1,3-dipolar cycloaddition with the enol ether (Scheme 4.35) [56]. The diastereomeric cycloadducts formed, 4-165 and 4-166 can be isolated in high yield. However, if R is hydrogen, an elimination process follows to give the acetals 4-167 in 56% yield. [Pg.303]

The key step in the synthesis of 4-354 is the retro-1,3-dipolar cycloaddition of the isoxazolidine 4-351 to give the nitronate 4-352, which underwent an intramolecular 1,3-dipolar cycloaddition. The obtained cycloadduct 4-353 can be transformed in a few steps into the desired target 4-354 (Scheme 4.78). [Pg.331]

Scheme 29 1,3-Dipolar cycloaddition of l-diazo-2-silyloxy-l-alkene and thermolysis of the cycloadduct... Scheme 29 1,3-Dipolar cycloaddition of l-diazo-2-silyloxy-l-alkene and thermolysis of the cycloadduct...
Dipolar cycloaddition of betaines 492 gave cycloadducts 493, which produced tricyclic compounds 494 on further thermolysis (Scheme 48) <1995H(41)1631>. Heating 9,9-disubstituted yr/ra-(4-hydroxy-2-oxo-2//-pyrido-[2. -//][ 1.3]thiazinium) hydroxides 495 afforded tricyclic compounds 497 as diastereomeric mixtures (Scheme 49) <1995S973>. In the case of the lower homolog (n = 0), a cycloadduct 496 could be also isolated at lower temperature. [Pg.180]

Dipolar cycloaddition of pyrido[2,l-A][l,3]thiazinium betaine 507 (R = Me) with 1-diethylamino-l-propyne afforded cycloadduct 508, from which quinolizin-4-one 509 formed by a rapid cheletropic extrusion of COS (Scheme 53) <1995T6651>. 1,4-Dipolar cycloaddition of 507 and 4-phenyl-l,2,4-triazoline-3,5-dione yielded 511 (via 510) <1995H(41)1631> and 512 <1995T6651>. [Pg.182]

H(65)1889, 2005EJO3553>. Starting dihydro[l,2,4]triazolo[3, 4-4]benzo[l,2,4]triazines 482 readily react with aromatic aldehydes to yield iminium salts 483. These salts treated with a base (e.g., triethylamine) are deprotonated to reactive 1,3-dipolar azomethine imines 484. In contrast to related five-membered heterocycles, these compounds are relatively unstable on storage in the solid form and particularly in solution. Fortunately, this obstacle can be easily circumvented by their in situ preparation and subsequent 1,3-dipolar cycloaddition. These compounds can participate in 1,3-dipolar cycloadditions with both symmetric and nonsymmetric dipolarophiles to give the expected 1,3-cycloadducts in stereoselective manner. Selected examples are given in Scheme 82. [Pg.436]

Despite the lack of success in the attempts at intramolecular cycloaddition with substrates 83 and 91, a moderately promising outcome was observed for the nitroalkene substrate (98, Scheme 1.10c). Heating a dilute solution of oxido-pyridinium betaine 98 in toluene to 120 °C produced a 20 % conversion to a 4 1 mixture of two cycloadducts (110 and 112), in which the major cycloadduct was identified as 110. While initially very encouraging, it became apparent that the dipolar cycloaddition reaction proceeded to no greater than 20 % conversion, an outcome independent of choice of reaction solvent. Further investigation, however, revealed that the reaction had reached thermodynamic equilibrium at 20 % conversion, a fact verified by resubmission of the purified major cycloadduct 110 to the reaction conditions to reestablish the same equilibrium mixture at 20 % conversion. [Pg.14]

These experimental findings, as well as earlier data on alkylidenecyclopropanes, clearly disclose a peculiar effect of a cyclopropylidene system both on reaction rates and regioselectivity. In fact, the parent MCP as well as its derivatives exhibit a high reactivity in 1,3-dipolar cycloadditions with nitrones. In contrast, the related open chain isobutene and its derivatives are well known to enter 1,3-dipolar cycloadditions sluggishly [51c-d, 70]. For example, there is no chance to obtain a cycloadduct from 256 and an open chain trialkyl or tetraalkylethylene, as was obtained in the reaction of 256 with 270 and 271. [Pg.48]

Related to the nitrile oxide cycloadditions presented in Scheme 6.206 are 1,3-dipolar cycloaddition reactions of nitrones with alkenes leading to isoxazolidines. The group of Comes-Franchini has described cycloadditions of (Z)-a-phenyl-N-methylnitrone with allylic fluorides leading to enantiopure fluorine-containing isoxazolidines, and ultimately to amino polyols (Scheme 6.207) [374]. The reactions were carried out under solvent-free conditions in the presence of 5 mol% of either scandium(III) or indium(III) triflate. In the racemic series, an optimized 74% yield of an exo/endo mixture of cycloadducts was obtained within 15 min at 100 °C. In the case of the enantiopure allyl fluoride, a similar product distribution was achieved after 25 min at 100 °C. Reduction of the isoxazolidine cycloadducts with lithium aluminum hydride provided fluorinated enantiopure polyols of pharmaceutical interest possessing four stereocenters. [Pg.238]

The 5-thio-substituted l,3,4-thiadiazole-2(377)-thiones 75 react with iV-methyl-C-phenylnitrilimine in a regiospe-cific 1,3-dipolar cycloaddition to form not the expected cycloadducts 76 but rather the rearranged products 77 and 78 in 16-28% yields (Scheme 6) <1998AJC499>. [Pg.581]

A novel type of heterocyclisation reaction involving the dipolar cycloaddition of jV,A-dialkylamino substituted thioisomunchnones and azodicarboxylates giving 1,2,4-triazine derivatives has been reported. The cycloadduct 26 is initially formed from the isomunchnone 24 and the azodicarboxylate 25, it then undergoes a selective fragmentation to give the 1,2,4-triazine 27 <99TL8675>. [Pg.191]

Reactions of methoxycarbonylformonitrile, furonitrile and substituted benzoni-trile oxides (4-Me, 4-OMe, 3-OMe, 4-C1, 3-C1, 2,4-di-Cl, 4-F as substituents) with dimethyl 7-(diphenylmethylene)bicyclo[2.2. l]hept-2-ene-5,6-dicarboxylate led exclusively to exo cycloadducts 82 (R = C02Me, 2-furyl, substituted phenyl), which, on irradiation with a low-pressure mercury lamp, afforded 3-azabicyclo [4.3.0]nonadiene-7,8-dicarboxylates 83 as the only products. The 1,3-dipolar cycloaddition, followed by a photorearrangement, provides a new method for obtaining tetrahydro-27/ -pyridine derivatives from cyclopentadiene (245). [Pg.34]

N-Arylmaleimides are useful reagents for trapping and characterization of nitrile oxides (see, e.g., Ref. 165). However, their cycloadducts can also be target products. Thus, a series of 3,5-diaryl-4,6-dioxo-3a,4,6,6a-tetrahydropyrrolo- 3.4-r/]isoxazoles 95 was obtained by 1,3-dipolar cycloaddition of substituted benzonitrile oxides with N-(2,6-dialkylphenyl)maleimides. Certain compounds 95 showed bactericidal and fungicidal activity (264). [Pg.38]

Dipolar cycloaddition of 3-cyano-4// -1 -benzopyran-4-thione 187 with benzonitrile oxide proceeded regioselectively to give cycloadduct 188 (involving the thione function). The unstable cycloadduct fragmented to yield 3-cyano-chromone 189 and phenyl isothiocyanate (Scheme 1.32) (355). [Pg.58]

I.3.4.2.6. Compounds with Unusual Double Bonds 1,3-Dipolar cycloaddition of l-chloro-2-phenyl-2-trimetkylsilyl-l-phosphaethene with nitrile oxides, followed by elimination of Me SiCl, results in 3,5-diphenyl-l,4,2-oxaphosphazole 190 (356). Chromium, molybdenum, and tungsten pentacarbonyls of 3,5-diphenyl-).3-phosphinins react with nitrile oxides to give the corresponding 1,3-dipolar cycloadducts, at the P = C bond, see 191 (Ar = Ph, Mes) (357). [Pg.58]


See other pages where 1,3-dipolar cycloaddition cycloadducts is mentioned: [Pg.60]    [Pg.19]    [Pg.145]    [Pg.273]    [Pg.69]    [Pg.460]    [Pg.54]    [Pg.1061]    [Pg.2]    [Pg.150]    [Pg.298]    [Pg.299]    [Pg.303]    [Pg.303]    [Pg.145]    [Pg.383]    [Pg.426]    [Pg.503]    [Pg.795]    [Pg.807]    [Pg.11]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.18]    [Pg.87]    [Pg.219]    [Pg.247]    [Pg.222]    [Pg.416]    [Pg.609]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



1,3-dipolar cycloaddition reactions cycloadduct

Cycloadducts

© 2024 chempedia.info