Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dioxirane epoxidations, electrophilic

A high catalyst loading (typically 20-30 mol%) is usually required for the epoxidation with ketone 26 because Baeyer-Vilhger oxidation presumably decomposes the catalyst during the epoxidation. The fused ketal moiety in ketone 26 was replaced by a more electron-withdrawing oxazohdinone (32) and acetates (33) with the anticipation that these replacements would decrease the amount of decomposition via Baeyer-Villiger oxidation (Fig. 8) [71, 72]. Only 5 mol% (1 mol% in some cases) of ketone 32 was needed to get comparable reactivity and enantioselectivity with 20-30 mol% of ketone 26 [71]. Since dioxiranes are electrophilic reagents, they show low reactivity toward electron-deficient olefins, such as a, 3-unsaturated esters. Ketone 33, readily available from ketone 26, was found to be an effective catalyst towards the epoxidation of a, 3-unsaturated esters [72]. [Pg.210]

As already mentioned, the dioxirane epoxidation of an alkene is a stereoselective process, which proceeds with complete retention of the original substrate configuration. The dioxirane epoxidation of chiral alkenes leads to diasteieomeric epoxides, for which the diasteieoselectivity depends on the alkene and on the dioxirane structure. A comparative study on the diasteieoselectivity for the electrophilic epoxidants DMD versus mCPBA has revealed that DMD exhibits consistently a higher diastereoselectivity than mCPBA however, the difference is usually small. An exception is 3-hydroxycyclohexene, which displays a high cis selectivity for mCPBA, but is unselective for DMD65. [Pg.1144]

An important finding is that all peroxo compounds with d° configuration of the TM center exhibit essentially the same epoxidation mechanism [51, 61, 67-72] which is also valid for organic peroxo compounds such as dioxiranes and peracids [73-79], The calculations revealed that direct nucleophilic attack of the olefin at an electrophilic peroxo oxygen center (via a TS of spiro structure) is preferred because of significantly lower activation barriers compared to the multi-step insertion mechanism [51, 61-67]. A recent computational study of epoxidation by Mo peroxo complexes showed that the metallacycle intermediate of the insertion mechanism leads to an aldehyde instead of an epoxide product [62],... [Pg.293]

The transition structures for the epoxidation of ethylene and propylene with peroxyformic acid and of ethylene with dioxirane and dimethyldioxirane calculated at the B3LYP, QCISD and CCSD levels are symmetrical with a spiro orientation of the electrophilic oxygen, whereas the MP2 calculations favor unsymmetrical transition structures. The geometries of the transition structures calculated using the B3LYP functional are close to those found at QCISD, CCSD, CCSD(T) levels as well as those found at the CASSCF(10,9) and CASSCF(10,10) levels for the transition structure of the epoxidation of ethylene. [Pg.35]

Electron-rich alkenes are the more reactive jr-bond snbstrates towards epoxidation by the electrophilic dioxiranes Some typical examples of these oxidations are snm-marized in Scheme 2. Since the resnlting epoxides are nsnally hydrolytically and ther-molytically qnite labile, snch oxidations are best carried ont with isolated dioxiranes. For example, the 8,9 epoxide of the well-known aflatoxin B, postnlated as potent carcinogen in the oxidative metabolism of this natural product, escaped numerous efforts to prepare it by conventional epoxidations because of its sensitivity towards hydrolysis . The synthesis of this labile epoxide was readily accomplished by employing a solution of the isolated DMD at room temperature (equation 2), and its mutagenicity unequivocally... [Pg.1139]

As discussed in Section 10.1, asymmetric epoxidation of C=C double bonds usually requires electrophilic oxygen donors such as dioxiranes or oxaziridinium ions. The oxidants typically used for enone epoxidation are, on the other hand, nucleophilic in nature. A prominent example is the well-known Weitz-Scheffer epoxidation using alkaline hydrogen peroxide or hydroperoxides in the presence of base. Asymmetric epoxidation of enones and enoates has been achieved both with metal-containing catalysts and with metal-free systems [52-55]. In the (metal-based) approaches of Enders [56, 57], Jackson [58, 59], and Shibasaki [60, 61] enantiomeric excesses > 90% have been achieved for a variety of substrate classes. In this field, however, the same is also true for metal-free catalysts. Chiral dioxiranes will be discussed in Section 10.2.1, peptide catalysts in Section 10.2.2, and phase-transfer catalysts in Section 10.2.3. [Pg.290]

In the metal-free epoxidation of enones and enoates, practically useful yields and enantioselectivity have been achieved by using catalysts based on chiral electrophilic ketones, peptides, and chiral phase-transfer agents. (E)-configured acyclic enones are comparatively easy substrates that can be converted to enantiomeri-cally highly enriched epoxides by all three methods. Currently, chiral ketones/ dioxiranes constitute the only catalyst system that enables asymmetric and metal-free epoxidation of (E)-enoates. There seems to be no metal-free method for efficient asymmetric epoxidation of achiral (Z)-enones. Exocyclic (E)-enones have been epoxidized with excellent ee using either phase-transfer catalysis or polyamino acids. In contrast, generation of enantiopure epoxides from normal endocyclic... [Pg.302]

The chemical reactivity most associated with dioxiranes is the electrophilic transfer of oxygen to electron-rich substrates (e.g., epoxidation, N-oxidation) as well as oxygen insertion reactions into unactivated C-H bonds. The reactivity-selectivity relationships among these types of reactions has been examined in depth by Curci. The reaction kinetics are dependent upon a variety of factors, including electron-donor power of the substrate, electrophilicity of the dioxirane, and steric influences (95PAC811]. [Pg.62]

The chemoselectivity of the dioxirane oxyfunctionalization usually follows the reactivity sequence heteroatom (lone-pair electrons) oxidation > JT-bond epoxida-tion > C-H insertion, as expected of an electrophilic oxidant. Because of this chemoselectivity order, heteroatoms in a substrate will be selectively oxidized in the presence of C-H bonds and even C-C double bonds. In allylic alcohols, however, C-H oxidation of the allylic C-H bond to a,/ -unsaturated ketones may compete efficaciously with epoxidation, especially when steric factors hinder the dioxirane attack on the Jt bond. To circumvent the preferred heteroatom oxidation and thereby alter the chemoselectivity order in favor of the C-H insertion, tedious protection methodology must be used. For example, amines may be protected in the form of amides [46], ammonium salts [50], or BF3 complexes [51] however, much work must still be expended on the development of effective procedures which avoid the oxidation of heteroatoms and C-C multiple bonds. [Pg.513]


See other pages where Dioxirane epoxidations, electrophilic is mentioned: [Pg.159]    [Pg.32]    [Pg.57]    [Pg.1135]    [Pg.32]    [Pg.57]    [Pg.1135]    [Pg.146]    [Pg.644]    [Pg.103]    [Pg.69]    [Pg.57]    [Pg.234]    [Pg.4]    [Pg.34]    [Pg.36]    [Pg.1135]    [Pg.1137]    [Pg.4]    [Pg.34]    [Pg.36]    [Pg.1135]    [Pg.1137]    [Pg.288]    [Pg.413]    [Pg.374]    [Pg.374]    [Pg.57]    [Pg.153]    [Pg.196]    [Pg.441]    [Pg.593]    [Pg.65]   


SEARCH



Dioxirane

Dioxirans

Electrophiles dioxiranes

Electrophiles epoxides

© 2024 chempedia.info