Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethylallyl diphosphate, from

Yoon, S.H., Lee, Y.M., Kim, J.E., Lee, S.H. et al (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng., 94, 1025-1032. [Pg.333]

Isoprene itself is not the true biological precursor of terpenoids. As we ll see in Chapter 27, nature instead uses two "isoprene equivalents"—isopentenvl diphosphate and dimethylallyl diphosphate—which are themselves made by two different routes depending on the organism. Lanosterol, in particular, is biosynthesized from acetic acid by a complex pathway that has been worked out in great detail. [Pg.203]

Two SN1 reactions occur during the biosynthesis of geraniol, a fragrant alcohol found in roses and used in perfumery. Geraniol biosynthesis begins with dissociation of dimethylallyl diphosphate to give an allylic carbocation, which reacts with isopentenyl diphosphate (Figure IT 15). From the viewpoint of isopentenyl diphosphate, the reaction is an electrophilic alkene addition, but from tile viewpoint of dimethylallyl diphosphate, the process in an Sjjl reaction in which the carbocation intermediate reacts with a double bond as the nucleophile. [Pg.382]

Figure 11.15 Biosynthesis of geraniol from dimethylallyl diphosphate. Two Sfvjl reactions occur, both with diphosphate ion as the leaving group. Figure 11.15 Biosynthesis of geraniol from dimethylallyl diphosphate. Two Sfvjl reactions occur, both with diphosphate ion as the leaving group.
Assume that the three terpenoids in Problem 27.24 are derived biosyntheti-cally from isopenteny diphosphate and dimethylallyl diphosphate, each of which was isotopically labeled at the diphosphate-bearing carbon atom (Cl). At what positions would the terpenoids be isotopically labeled ... [Pg.1094]

Figure 73. The carotenoid biosynthetic pathway. Enzymes are named according to the designation of their genes Ccs, capsanthin-capsorubin synthase CrtL-b, lycopene-b-cyclase CrtL-e, lycopene-e-cyclase CrtR-b, b-ring hydroxylase, CrtR-e, e-ring hydroxylase DMADP, dimethylallyl diphosphate GGDP, geranylgeranyl diphosphate Ggps, geranylgeranyl-diphosphate synthase IDP, isopentenyl diphosphate Ipi, IDP isomerase Pds, phytoene desaturase Psy, phytoene synthase Vde, violaxanthin de-epoxidase Zds, z-carotene desaturase Zep, zeaxanthin epoxidase. (From van den Berg and others 2000.)... Figure 73. The carotenoid biosynthetic pathway. Enzymes are named according to the designation of their genes Ccs, capsanthin-capsorubin synthase CrtL-b, lycopene-b-cyclase CrtL-e, lycopene-e-cyclase CrtR-b, b-ring hydroxylase, CrtR-e, e-ring hydroxylase DMADP, dimethylallyl diphosphate GGDP, geranylgeranyl diphosphate Ggps, geranylgeranyl-diphosphate synthase IDP, isopentenyl diphosphate Ipi, IDP isomerase Pds, phytoene desaturase Psy, phytoene synthase Vde, violaxanthin de-epoxidase Zds, z-carotene desaturase Zep, zeaxanthin epoxidase. (From van den Berg and others 2000.)...
Fig. 2. Schematic representation of paclitaxel biosynthesis. Dimethylallyl-diphosphate and isopentenyl-diphosphate are condensed through geranylgeranyl diphosphate synthase activity to render geranylgeranyl-diphosphate (GGPP). GGPP is converted into taxa-4(5), 11 (12)-diene in a reaction catalyzed by the taxane synthase (TS). A series of reactions catalyzed by cytochrome P450 monoxygenases lead to the production of a taxane intermediate that is further converted to baccatin III through enzymes-driven oxidation and oxetane ring formation. The side chain moiety of paclitaxel is derived from L-phenylalanine. Three consecutive arrows mean multiple steps. Ac, acetyl Bz, benzoyl. Fig. 2. Schematic representation of paclitaxel biosynthesis. Dimethylallyl-diphosphate and isopentenyl-diphosphate are condensed through geranylgeranyl diphosphate synthase activity to render geranylgeranyl-diphosphate (GGPP). GGPP is converted into taxa-4(5), 11 (12)-diene in a reaction catalyzed by the taxane synthase (TS). A series of reactions catalyzed by cytochrome P450 monoxygenases lead to the production of a taxane intermediate that is further converted to baccatin III through enzymes-driven oxidation and oxetane ring formation. The side chain moiety of paclitaxel is derived from L-phenylalanine. Three consecutive arrows mean multiple steps. Ac, acetyl Bz, benzoyl.
A second example is isomerization of isopentenyl diphosphate to dimethylallyl diphosphate (Eq. 13-56) 304-307 The stereochemistry has been investigated using the 3H-labeled compound shown in Eq. 13-56. The pro-R proton is lost from C-2 and a proton is added to the re face at C-4. When the reaction was carried out in 2H20 a chiral methyl group was produced as shown.304 A concerted proton addition and abstraction is also possible, the observed trans stereochemistry being expected for such a mechanism. However, the... [Pg.712]

Many other natural coumarins have a more complex carbon framework and incorporate extra carbons derived from an isoprene unit (Figure 4.33). The aromatic ring in umbelliferone is activated at positions ortho to the hydroxyl group and can thus be alkylated by a suitable alkylating agent, in this case dimethylallyl diphosphate. The newly introduced dimethylallyl... [Pg.143]

Silver, G.M. and Fall, R. (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol, 97,1588-91. [Pg.300]

All isoprenoids are biosynthesized from two isomeric 5-carbon compounds, isopentenyl diphosphate (IPP, 86) and dimethylallyl diphosphate (DMAPP, 87) (Fig. 11). The mammalian pathway for the biosynthesis of these key biosynthetic precursors from three acetyl-CoA units (83) via mevalonate (85) had been elucidated in the 1950s (51). In the wake of that pioneering work, it became established dogma that all terpenoids are invariably of mevalonate origin, even in the face of significant aberrant findings. [Pg.251]

Most terpenoids are derived from mevalonic acid (MVA) through the universal precursor isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). Thus, the vast majority of terpenoids contain the basic structural residue 2-methylbutane, often less precisely referred to as isoprene units. These C5 hemiterpene units combine with... [Pg.477]

Fisher AJ, Baker BM, Greenberg JP, Fall R. Enzymatic synthesis of methylbutenol from dimethylallyl diphosphate in needles of Finns sabiniana. Arch. Biochem. Biophys. 2000 383 128-134. [Pg.1842]

The carbon skeleton of isoprenoids is derived from the branched C5 skeleton of isoprene. Isopentenyl diphosphate and dimethylallyl diphosphate represent the biologic equivalents of isoprene. From research on cholesterol biosynthesis in liver tissues and on ergosterol in yeast, mevalonate was accepted as the universal precursor of isoprenoids. However this assertion is inaccurate. Incorporation of labeled acetate and glucose isotopomers into bacterial isoprenoids and into diterpenes of ginkgo embryos indicated fortuitously the existence of an alternative mevalonate-independent route. Its full elucidation required experiments using and H-labeled precursors followed by extensive nuclear magnetic resonance analyses as well as a combination of biochemical and molecular biology methods. These additional studies revealed a complete set of novel unsuspected enzymes. [Pg.1935]

Terpenoids are derived from the cytosolic mevalonate pathway or from the plastidial 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway (see also Terpenoid Biosynthesis). Both pathways lead to the formation of the C5 units isopentenyl diphosphate and its allylic isomer dimethylallyl diphosphate, which are the basic terpenoid biosynthesis building blocks (Fig. 1). Although increasing evidence suggests that exchange of intermediates occurs between these compartments, the cytoplasmic mevalonate pathway is generally considered to supply the precursors for the production of sesquiterpenes and triterpenes (including sterols) and to provide precursors for protein prenylation and for ubiquinone and heme-A production in mitochondria. In the plastids, the MEP pathway supplies the precursors for the production of isoprene, monoterpenes, diterpenes (e.g., GAs), and tetraterpenes (e.g., carotenoids). [Pg.2139]

The early steps in the ergot alkaloid biosynthetic pathway are outlined in Fig. 1. The first determinant and rate-limiting step is the prenylation of tryptophan to 4-(y,y-dimethylallyl)tryptophan (DMAT), catalyzed by dimethy-lallyl-diphosphate L-tryptophan dimethylallyltransferase (DMAT synthase EC 2.5.1.34) (Heinstein et al., 1971 Gebler and Poulter, 1992). The prenyl group for the DMAT synthase reaction is provided in the form of dimethylallyl diphosphate (DMAPP), which is derived from mevalonic acid. After the formation of DMAT, the free amino group of this intermediate is N-methylated with a methyl group donated by S-adenosylmethionine (AdoMet). The N-methylated DMAT is then converted into chanoclavine I by closure of the... [Pg.404]

Although several previous reports claimed that the enzyme had been purified, Gebler and Poulter (1992) appear to have been the first to fully characterize the activity of the purified DMAT synthase. The enzyme was purified from Claviceps fusiformis ATCC 26245 [erroneously annotated in type specimen collections as a C. purpurea strain (Pazoutova and Tudzynski, 1999)]. The monomeric size was estimated at 53 kDa, and by gel filtration analysis the native enzyme was determined (at 105 kDa) to be a homodimer. Unlike other prenyltransferases, no metal ion requirement has been noted. However, when assayed in a buffer with 4 mM Ca2+, the purified protein gave a specific activity of 500 nmol/min/mg, essentially the same as with 4 mM Mg2+, but approximately twice that of the measured without added divalent cations and with the chelator EDTA included in the assay buffer. These divalent metal cations eliminated negative cooperativity of substrate binding observed both for dimethylallyl diphosphate and L-tryptophan, indicating that Ca2+ and Mg2+ probably had allosteric effects. In buffer with 4 mM MgCl2 the KM for dimethylallyl diphosphate was 8 jlM, and the KM for L-tryptophan was 12 xM. The enzyme product was authenticated by mass spectrometry, UV spectrometry, and -NMR. [Pg.414]

All carotenoids are derived from the isoprenoid or terpenoid pathway. From prenyl diphosphates of different chain lengths, specific routes branch off into various terpenoid end products. The prenyl diphosphates are formed by different prenyl transferases after isomerization of IPP to DMAPP by successive T-4 condensations with IPP molecules. Condensation of one molecule of dimethylallyl diphosphate (DMADP) and three molecules of isopentyl diphosphate (IDP) produces the diter-pene geranylgeranyl diphosphate (GGDP) that forms one-half of all C40 carotenoids. The head-to-head condensation of two GGDP molecules results in the first colorless carotenoid, phytoene. Phytoene synthesis is the first committed step in C40 carotenoid biosynthesis (Britton et al. 1998, Sandmann 2001). [Pg.359]

Fig. 1.4 Outline of terpenoid biosynthesis from isopentenyl diphosphate (IPP) via dimethylallyl diphosphate (DMAPP), gcranyl diphosphate (GPP), famesyl diphosphate (FPP) and geranylgcranyl diphosphate (GGPP). These reactions are catalyzed by isoprenyl diphosphate synthases and terpene synthases. The major products of the monoterpene, sesquiterpene, and diterpene pathways that constitute the oleoresm of Picea abies are listed. The general precursor IPP is derived either from the plastidial methylerythritol phosphate (MEP) pathway or the cytosolic mevalonaic pathway. Fig. 1.4 Outline of terpenoid biosynthesis from isopentenyl diphosphate (IPP) via dimethylallyl diphosphate (DMAPP), gcranyl diphosphate (GPP), famesyl diphosphate (FPP) and geranylgcranyl diphosphate (GGPP). These reactions are catalyzed by isoprenyl diphosphate synthases and terpene synthases. The major products of the monoterpene, sesquiterpene, and diterpene pathways that constitute the oleoresm of Picea abies are listed. The general precursor IPP is derived either from the plastidial methylerythritol phosphate (MEP) pathway or the cytosolic mevalonaic pathway.
Isopentenyl diphosphate (IPP) isomerase (EC 5.3.3.2) catalyses the interconversion of IPP and dimethylallyl diphosphate (DMAPP). During a growth cycle of a suspension culture of C. roseus, relatively highest IPP isomerase activity was found between 4 and 6 days after subculture about 20 pkat/mg protein. By Western blot analysis, using purified polyclonal antibodies raised against IPP isomerase from Capsicum annuum chloroplasts, two isoforms of IPP isomerase were detected in the C. roseus extracts [13]. [Pg.181]

In the presence of the enzyme isopentenyl diphosphate isomerase, isopentenyl diphosphate is converted to dimethylallyl diphosphate. The isomerization involves two successive proton transfers one from an acidic site of the enzyme (Enz—H) to the double bond to give a tertiary carbocation the other is deprotonation of the carbocation by a basic site of the enzyme to generate the double bond of dimethylallyl diphosphate. [Pg.1093]


See other pages where Dimethylallyl diphosphate, from is mentioned: [Pg.1071]    [Pg.1072]    [Pg.326]    [Pg.1071]    [Pg.1072]    [Pg.326]    [Pg.260]    [Pg.273]    [Pg.163]    [Pg.300]    [Pg.141]    [Pg.617]    [Pg.350]    [Pg.223]    [Pg.370]    [Pg.42]    [Pg.194]    [Pg.204]    [Pg.382]    [Pg.487]    [Pg.9]    [Pg.234]   


SEARCH



© 2024 chempedia.info