Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl sulfide reaction with base

Diborane [19287-45-7] the first hydroborating agent studied, reacts sluggishly with olefins in the gas phase (14,15). In the presence of weak Lewis bases, eg, ethers and sulfides, it undergoes rapid reaction at room temperature or even below 0°C (16—18). The catalytic effect of these compounds on the hydroboration reaction is attributed to the formation of monomeric borane complexes from the borane dimer, eg, borane-tetrahydrofuran [14044-65-6] (1) or borane—dimethyl sulfide [13292-87-0] (2) (19—21). Stronger complexes formed by amines react with olefins at elevated temperatures (22—24). [Pg.308]

Vinyl chloride reacts with sulfides, thiols, alcohols, and oximes in basic media. Reaction with hydrated sodium sulfide [1313-82-2] in a mixture of dimethyl sulfoxide [67-68-5] (DMSO) and potassium hydroxide [1310-58-3], KOH, yields divinyl sulfide [627-51-0] and sulfur-containing heterocycles (27). Various vinyl sulfides can be obtained by reacting vinyl chloride with thiols in the presence of base (28). Vinyl ethers are produced in similar fashion, from the reaction of vinyl chloride with alcohols in the presence of a strong base (29,30). A variety of pyrroles and indoles have also been prepared by reacting vinyl chloride with different ketoximes or oximes in a mixture of DMSO and KOH (31). [Pg.414]

N -Fmoc serine benzyl ester 2, which could be prepared as shown or purchased commercially, was smoothly converted to the crystalHne O-methylthiomethyl (MTM) ether 3 in high yield via a Pummerer-Hke reaction using benzoyl peroxide and dimethyl sulfide in acetonitrile [39]. This common intermediate was used to synthesize both 5 and 8 [40]. Both Ogilvie [41] and Tsantrizos [42] had reported that I2 was an effective activator with similar MTM ether substrates. The H promoted nucleosidation reaction between O-MTM ether 3 and bis-silylated thymine 4 produced the nucleoamino acid 5 in 60% isolated yield (100% based on recovered 3). Hydrogenolytic deprotection of the benzyl ester with H2, Pd/C in MeOH gave the thymine-containing nucleoamino acid 6 in quantitative yield. [Pg.200]

The last reaction perhaps involves an intermediate such as 33a which expells a proton and dimethyl sulfide. Formation of the Schiff s base with t-butylamine, reduction with sodium borohydride and hydrogenolysis of the benzyl ether produces sulfonterol (28). Despite the fact that the methylene hydrogen of sulfonterol must be much less acidic than of the corresponding urea proton on carbuterol or the sulfonamide proton on soterenol, good bioactivity is retained. [Pg.43]

A high-speed sensor for the assay of dimethyl sulfide in the marine troposphere based on its CL reaction with F2 was recently reported [18]. Sample air and F2 in He were introduced at opposite ends of a reaction cell with a window at one end. The production of vibrationally excited HF and electronically excited fluorohydrocarbon (FHC) produced CL emission in the wavelength range 450-650 nm, which was monitored via photon counting. Dimethyl sulfide could be determined in the 0-1200 pptv (parts per trillion by volume) concentration range, with a 4-pptv detection limit. [Pg.573]

A boron analog - sodium borohydride - was prepared by reaction of sodium hydride with trimethyl borate [84 or with sodium fluoroborate and hydrogen [55], and gives, on treatment with boron trifluoride or aluminum chloride, borane (diborane) [86. Borane is a strong Lewis acid and forms complexes with many Lewis bases. Some of them, such as complexes with dimethyl sulfide, trimethyl amine and others, are sufficiently stable to have been made commercially available. Some others should be handled with precautions. A spontaneous explosion of a molar solution of borane in tetrahydrofuran stored at less than 15° out of direct sunlight has been reported [87]. [Pg.14]

The mechanism of the Parikh-Doering oxidation involves formation of O-di-methylsulfoxonium sulfate from the reaction of DMSO with S03. Displacement on the sulfur by the alcohol gives the alkoxysulfonium salt intermediate, which undergoes base-catalyzed elimination to afford the dimethyl sulfide and the aldehyde. This reaction must be carried out so the hydrogen sulfate of the alcohol is not formed first, otherwise no oxidation would occur. 1143 44 ... [Pg.209]

Computational studies showed that the nature of the reactive species in the oxidation of trimethylamine, iodide ion, and dimethyl sulfide with lumiflavin is a C4 a-hydroperoxide complexed with water. The other two species, C4 a-hydroperoxide and C4 a-peroxide, yielded higher activation energies.237 Kinetic and spectroscopic studies on the effect of basic solvents, ethers, esters, and amides, on the oxidation of thianthrene-5-oxide with substituted peroxybenzoic acids indicated the involvement of the basic solvent in the transition state of the reactions. A solvent parameter, Xtc, based on the ratio of the trans to the cis form of thianthrene-5,10-dioxide, has been introduced.238... [Pg.119]

The final stage of this reaction involves an E2 elimination. In this step, illustrated below, a proton adjacent to the oxygen is removed by a base such as triethylamine. The negative charge then forms a double bond with the oxygen and dimethyl-sulfide is eliminated. The overall oxidation process converts an alcohol into an aldehyde. [Pg.270]

The vacant orbital is able to accept a lone pair of electrons from a Lewis base to give a neutral species or can combine with a nucleophile to form a negatively charged tetrahedral anion. Thcj reducing agent boran e-dimethyl sulfide is an example of the Lewis acid behaviour while the borohy-j dride anion would be the result of the imaginary reaction of borane with a nucleophile hydride. The vacant orbital makes borane a target for nucleophiles. [Pg.1277]


See other pages where Dimethyl sulfide reaction with base is mentioned: [Pg.29]    [Pg.113]    [Pg.115]    [Pg.318]    [Pg.320]    [Pg.320]    [Pg.320]    [Pg.322]    [Pg.323]    [Pg.323]    [Pg.324]    [Pg.324]    [Pg.293]    [Pg.308]    [Pg.22]    [Pg.113]    [Pg.33]    [Pg.332]    [Pg.243]    [Pg.75]    [Pg.316]    [Pg.43]    [Pg.282]    [Pg.1097]    [Pg.369]    [Pg.210]    [Pg.131]    [Pg.293]    [Pg.75]    [Pg.689]    [Pg.293]    [Pg.44]    [Pg.110]    [Pg.47]    [Pg.70]    [Pg.203]   
See also in sourсe #XX -- [ Pg.572 ]




SEARCH



Dimethyl reactions

Dimethyl sulfide

Dimethyl sulfide reaction

Reaction with base

Reaction with dimethyl sulfide

Reaction with sulfides

Sulfides reaction with bases

© 2024 chempedia.info