Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Helium diffusivity

D = 10 8cm2/s, which is the value for olivine at 1300°C at an atmospheric pressure (Hart, 1984 Trull et al., 1991) and d = 30km, we have l 1013 years. Hence, we may safely assume that diffusive helium transportation from the lower mantle is negligible even if integrated over the age of the Earth. [Pg.215]

Remick and Geankoplis made flux measurements for both species in the isobaric diffusion of nitrogen and helium through their tube bundle. Pressures spanned the interval from 0.444 nim, Hg to 300,2 ram Hg, which should cover the whole range between the limits of Knudsen streaming and bulk diffusion control. Then, since K and K, are known in this case, the form of the proposed flux relations could be tested immediately by plotting the left hand side of equation (10.15) against... [Pg.96]

They then compared measured and predicted fluxes for diffusion experiments in the mixture He-N. The tests covered a range of pressures and a variety of compositions at the pellet faces but, like the model itself, they were confined to binary mixtures and isobaric conditions. Feng and Stewart [49] compared their models with isobaric flux measurements in binary mixtures and with some non-isobaric measurements in mixtures of helium and nitrogen, using data from a variety of sources. Unfortunately the information on experimental conditions provided in their paper is very sparse, so it is difficult to assess how broadly based are the conclusions they reached about the relative merits oi their different models. [Pg.101]

The flow of droplets is directed through a small orifice (Skimmer 1 Figure 12.1) and across a small region that is kept under vacuum by rotary pumps. In this region, approximately 90% of solvent and injected helium is removed from the incipient particle beam. Because the rate of diffusion of a substance is inversely proportional to its molecular mass, the lighter helium and solvent molecules diffuse away from the beam and are pumped away. The heavier solute molecules diffuse more slowly and pass through the first skimmer before they have time to leave the beam the solute is accompanied by residual solvent and helium. [Pg.78]

There is assumed to be no interaction between the superfluid and normal components, thus the superfluid component can diffuse very rapidly to a heat source where it absorbs energy by reverting to the normal state. It thereby produces the very high effective thermal conductivity observed in helium II. [Pg.8]

Unusual behavior has also been observed in soHd mixtures of He and He. In principle, all soHd mixtures should separate as absolute 2ero is approached, but because of kinetic limitations, this equiHbrium condition is almost never observed. However, because of high diffusivity resulting from the large 2ero-point motion in soHd helium, this sort of separation takes place in a matter of hours in soHd mixtures of He and He (53,61). The two-phase region for the soHd mixture is outlined by the dashed curve in Figure 4. The two-phase dome is shallow, and its temperature maximum is 0.38 K. [Pg.9]

The helium leak detector is a common laboratory device for locating minute leaks in vacuum systems and other gas-tight devices. It is attached to the vacuum system under test a helium stream is played on the suspected leak and any leakage gas is passed into a mass spectrometer focused for the helium-4 peak. The lack of nearby mass peaks simplifies the spectrometer design the low atmospheric background of helium yields high sensitivity helium s inertness ensures safety and its high diffusivity and low adsorption make for fast response. [Pg.15]

Different combinations of stable xenon isotopes have been sealed into each of the fuel elements in fission reactors as tags so that should one of the elements later develop a leak, it could be identified by analyzing the xenon isotope pattern in the reactor s cover gas (4). Historically, the sensitive helium mass spectrometer devices for leak detection were developed as a cmcial part of building the gas-diffusion plant for uranium isotope separation at Oak Ridge, Tennessee (129), and heHum leak detection equipment is stiU an essential tool ia auclear technology (see Diffusion separation methods). [Pg.16]

FIG. 2 Mean-square displacement (MSD) of helium atoms dissolved in polyisobutylene. There is a regime of anomalous diffusion (MSD a followed by a crossover at 100 ps to normal (Einstein) diffusion (MSD a r) [24],... [Pg.490]

Gas-phase deposition In this process, a halide of the solute metal is passed in vapour form over the surface of the metal to be coated, which is heated to a temperature at which diffusion can take place. Temperatures of 500-1 300°C or more can be used, depending on the particular system considered. Generally, filler atmospheres are provided to carry the halide vapour these atmospheres are usually reducing gases such as hydrogen, cracked ammonia, etc. or inert gases (helium, argon). [Pg.400]

Fig. 2.4. The asymptotic behaviour of the IR spectrum beyond the edge of the absorption branch for CO2 dissolved in different gases (o) xenon (O) argon ( ) nitrogen ( ) neon (V) helium. The points are experimental data, the curves were calculated in [105] according to the quantum J-diffusion model and two vertical broken lines determine the region in which Eq. (2.58) is valid. Fig. 2.4. The asymptotic behaviour of the IR spectrum beyond the edge of the absorption branch for CO2 dissolved in different gases (o) xenon (O) argon ( ) nitrogen ( ) neon (V) helium. The points are experimental data, the curves were calculated in [105] according to the quantum J-diffusion model and two vertical broken lines determine the region in which Eq. (2.58) is valid.
Checking the absence of internal mass transfer limitations is a more difficult task. A procedure that can be applied in the case of catalyst electrode films is the measurement of the open circuit potential of the catalyst relative to a reference electrode under fixed gas phase atmosphere (e.g. oxygen in helium) and for different thickness of the catalyst film. Changing of the catalyst potential above a certain thickness of the catalyst film implies the onset of the appearance of internal mass transfer limitations. Such checking procedures applied in previous electrochemical promotion studies allow one to safely assume that porous catalyst films (porosity above 20-30%) with thickness not exceeding 10pm are not expected to exhibit internal mass transfer limitations. The absence of internal mass transfer limitations can also be checked by application of the Weisz-Prater criterion (see, for example ref. 33), provided that one has reliable values for the diffusion coefficient within the catalyst film. [Pg.554]


See other pages where Helium diffusivity is mentioned: [Pg.45]    [Pg.220]    [Pg.326]    [Pg.237]    [Pg.65]    [Pg.237]    [Pg.700]    [Pg.256]    [Pg.45]    [Pg.220]    [Pg.326]    [Pg.237]    [Pg.65]    [Pg.237]    [Pg.700]    [Pg.256]    [Pg.2949]    [Pg.100]    [Pg.91]    [Pg.298]    [Pg.4]    [Pg.11]    [Pg.401]    [Pg.503]    [Pg.375]    [Pg.375]    [Pg.375]    [Pg.597]    [Pg.283]    [Pg.152]    [Pg.114]    [Pg.299]    [Pg.371]    [Pg.153]    [Pg.125]    [Pg.344]    [Pg.3]    [Pg.251]    [Pg.335]    [Pg.368]    [Pg.96]    [Pg.108]    [Pg.291]    [Pg.324]    [Pg.327]    [Pg.534]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Does Helium Diffuse Through the Upper Crust

Helium diffusion

Pump, diffusion helium)

Underground Storage of Helium Diffusion through a Spherical Surface

© 2024 chempedia.info