Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion coefficient charge

The choice of the FFF technique dictates which physicochemical parameters of the analyte govern its retention in the channel FIFFF separates solely by size, SdFFF by both size and density, ThFFF by size and chanical composition, and EIFFF by mass and charge. The dependence of retention on factors other than size can be advantageous in some applications, and different information can be obtained by employing different techniques in combination or in sequence. On the other hand, the properties that can be characterized by FFF include analyte mass, density, volume, diffusion coefficient, charge, electrophoretic mobility, p/ (isoelectric point), molecular weight, and particle diameter. [Pg.351]

Values determined for diffusion coefficients/charge transport rates using both cyclic voltammetry techniques were essentially the same (see Fig. 8.8), and these are denoted as DcriCV), These charge transport rates typically ranged from 10r i-io-i (see Tables 8.2 and 8.3). [Pg.189]

All of the films studied show catalytic activity in the reduction of dioxygen to H2O2 or H2O. Impedance analysis was found to be applicable in the determination of the charge transfer diffusion coefficient, charge transfer resistance, and in the double layer capacity of M(p-Et2N)TPP films. [Pg.103]

The movement of the fast electrons leads to the fonnation of a space-charge field that impedes the motion of the electrons and increases the velocity of the ions (ambipolar diffusion). The ambipolar diffusion of positive ions and negative electrons is described by the ambipolar diffusion coefficient... [Pg.2797]

Adsorption Kinetics. In zeoHte adsorption processes the adsorbates migrate into the zeoHte crystals. First, transport must occur between crystals contained in a compact or peUet, and second, diffusion must occur within the crystals. Diffusion coefficients are measured by various methods, including the measurement of adsorption rates and the deterniination of jump times as derived from nmr results. Factors affecting kinetics and diffusion include channel geometry and dimensions molecular size, shape, and polarity zeoHte cation distribution and charge temperature adsorbate concentration impurity molecules and crystal-surface defects. [Pg.449]

For an ion to move through the lattice, there must be an empty equivalent vacancy or interstitial site available, and it must possess sufficient energy to overcome the potential barrier between the two sites. Ionic conductivity, or the transport of charge by mobile ions, is a diffusion and activated process. From Fick s Law, J = —D dn/dx), for diffusion of a species in a concentration gradient, the diffusion coefficient D is given by... [Pg.351]

Electrically assisted transdermal dmg deflvery, ie, electrotransport or iontophoresis, involves the three key transport processes of passive diffusion, electromigration, and electro osmosis. In passive diffusion, which plays a relatively small role in the transport of ionic compounds, the permeation rate of a compound is deterrnined by its diffusion coefficient and the concentration gradient. Electromigration is the transport of electrically charged ions in an electrical field, that is, the movement of anions and cations toward the anode and cathode, respectively. Electro osmosis is the volume flow of solvent through an electrically charged membrane or tissue in the presence of an appHed electrical field. As the solvent moves, it carries dissolved solutes. [Pg.145]

These three terms represent contributions to the flux from migration, diffusion, and convection, respectively. The bulk fluid velocity is determined from the equations of motion. Equation 25, with the convection term neglected, is frequently referred to as the Nemst-Planck equation. In systems containing charged species, ions experience a force from the electric field. This effect is called migration. The charge number of the ion is Eis Faraday s constant, is the ionic mobiUty, and O is the electric potential. The ionic mobiUty and the diffusion coefficient are related ... [Pg.65]

In the polar pores, the diffusion coefficient of all ions is strongly reduced relative to the bulk values. No counterion dependence is observed for the SDC of CP. A more detailed analysis shows that the ion SDC depends on the ion s relative position in the pore [174]. In the case of the K ion, this dependence is particularly strong. K ions forming contact pairs with the surface charges are almost completely immobilized on the time scale of the simulations. The few remaining ions in the center of the pore are almost unaffected by the (screened) surface charges. The fact that most of the K ions form contact pairs substantially reduces the average value of the normalized K SDC to 0.2. The behavior of CP is similar to that of K. The SDC of sodium ions, which... [Pg.372]

The behavior of ionic liquids as electrolytes is strongly influenced by the transport properties of their ionic constituents. These transport properties relate to the rate of ion movement and to the manner in which the ions move (as individual ions, ion-pairs, or ion aggregates). Conductivity, for example, depends on the number and mobility of charge carriers. If an ionic liquid is dominated by highly mobile but neutral ion-pairs it will have a small number of available charge carriers and thus a low conductivity. The two quantities often used to evaluate the transport properties of electrolytes are the ion-diffusion coefficients and the ion-transport numbers. The diffusion coefficient is a measure of the rate of movement of an ion in a solution, and the transport number is a measure of the fraction of charge carried by that ion in the presence of an electric field. [Pg.118]

With electrochemical methods such as chronoamperometry, cyclovoltammetry (CV), or conductivity measurements, the diffusion coefficients of charged chemical species can be estimated in highly dilute solutions [16, 17]. [Pg.166]

Figure 13. Voltage relaxation method for the determination of the diffusion coefficients (mobilities) of electrons and holes in solid electrolytes. The various possibilities for calculating the diffusion coefficients and from the behavior over short (t L2 /De ) and long (/ L2 /Dc ll ) times are indicated cc h is the concentration of the electrons and holes respectively, q is the elementary charge, k is the Boltzmann constant and T is the absolute temperature. Figure 13. Voltage relaxation method for the determination of the diffusion coefficients (mobilities) of electrons and holes in solid electrolytes. The various possibilities for calculating the diffusion coefficients and from the behavior over short (t L2 /De ) and long (/ L2 /Dc ll ) times are indicated cc h is the concentration of the electrons and holes respectively, q is the elementary charge, k is the Boltzmann constant and T is the absolute temperature.
Hinton, DP Johnson, CS, Diffusion Coefficients, Electrophoretic Mobilities, and Morphologies of Charged Phospholipid Vesicles by Pulsed Field Gradient NMR and Electron Microscopy, Journal of Colloid and Interface Science 173, 364, 1995. [Pg.613]

The relation between E and t is S-shaped (curve 2 in Fig. 12.10). In the initial part we see the nonfaradaic charging current. The faradaic process starts when certain values of potential are attained, and a typical potential arrest arises in the curve. When zero reactant concentration is approached, the potential again moves strongly in the negative direction (toward potentials where a new electrode reaction will start, e.g., cathodic hydrogen evolution). It thus becomes possible to determine the transition time fiinj precisely. Knowing this time, we can use Eq. (11.9) to find the reactant s bulk concentration or, when the concentration is known, its diffusion coefficient. [Pg.205]


See other pages where Diffusion coefficient charge is mentioned: [Pg.159]    [Pg.440]    [Pg.1098]    [Pg.149]    [Pg.194]    [Pg.393]    [Pg.159]    [Pg.440]    [Pg.1098]    [Pg.149]    [Pg.194]    [Pg.393]    [Pg.643]    [Pg.645]    [Pg.145]    [Pg.161]    [Pg.121]    [Pg.370]    [Pg.248]    [Pg.251]    [Pg.259]    [Pg.42]    [Pg.511]    [Pg.548]    [Pg.5]    [Pg.143]    [Pg.246]    [Pg.393]    [Pg.397]    [Pg.572]    [Pg.63]    [Pg.560]    [Pg.585]    [Pg.645]    [Pg.304]    [Pg.59]    [Pg.73]    [Pg.229]    [Pg.100]    [Pg.544]    [Pg.649]    [Pg.381]    [Pg.394]   
See also in sourсe #XX -- [ Pg.283 , Pg.295 , Pg.305 , Pg.331 ]




SEARCH



Charge diffusive

Diffuse charges

© 2024 chempedia.info