Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffraction, from crystalline supports

Diffraction from Crystalline Supports. Although diffraction conveniently boosts particle contrast in ratio images,... [Pg.369]

Electron microscopy and X-ray diffraction experiments conducted on resilin-containing insect cuticle provided further support for resilin existing in the rubbery state as a crosslinked random network of protein chains. No fine structure was revealed by the electron microscopy experiments and zero crystallinity could be detected from the X-ray diffraction experiments. Furthermore, the diffraction... [Pg.101]

Some other situation is realized in a case of TEG-tin CMs. Electron microscopy studies of the obtained TEG-Sn powders revealed the uniform coverage of TEG surface by tin particles. Tin particles are of spherical shape and their sizes are about 40-80 nm, i.e. somewhat higher than in a case of silicon particles. Low scatter of particle sizes is observed as in a case of TEG-silicon system. However, as it is clearly seen from the data of the X-ray structure analysis (Figure 4) tin particles deposited on the surface of graphite support are in crystalline state. The distinct and narrow tin reflections at the X-ray diffraction pattern evidence this fact. [Pg.363]

The assumption of membrane softness is supported by a theoretical argument of Nelson et al., who showed that a flexible membrane cannot have crystalline order in thermal equilibrium at nonzero temperature, because thermal fluctuations induce dislocations, which destroy this order on long length scales.188 189 The assumption is also supported by two types of experimental evidence for diacetylenic lipid tubules. First, Treanor and Pace found a distinct fluid character in NMR and electron spin resonance experiments on lipid tubules.190 Second, Brandow et al. found that tubule membranes can flow to seal up cuts from an atomic force microscope tip, suggesting that the membrane has no shear modulus on experimental time scales.191 However, conflicting evidence comes from X-ray and electron diffraction experiments on diacetylenic lipid tubules. These experiments found sharp diffraction peaks, which indicate crystalline order in tubule membranes, at least over the length scales probed by the diffraction techniques.123,192 193... [Pg.357]

The total surface areas determined by the N2 BET method for the calcined, supported catalysts are listed in Table II. The X-ray diffraction (XRD) results showed diffraction peaks from a cubic lattice with a unit cell distance of 6.1 A were present on all of the calcined catalysts. Both C03O4 and C0AI2O4 have structures consistent with that lattice spacing, making assignment of the type of crystalline cobalt species present on the alumina supports difficult. [Pg.47]

Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) are the techniques most widely used for the characterization of crystallinity and polymorphism of solid lipid particles. Although DSC is usually more sensitive in detecting crystalline material, XRD is much more reliable in determining the type of polymorph present in the dispersions because it provides structural data. In contrast, DSC can detect the type of polymorph only indirectly via the transition temperatures and enthalpies. Because these parameters may be different from those observed in the bulk material, particularly for small colloidal particles [1,62], assigmnent of polymorphic forms in DSC curves should be supported by x-ray data. [Pg.8]

Zeolites are crystalline aluminosilicates that have exhibited catalytic activities ranging from one to four orders of magnitude greater than amorphous aluminosilicates for reactions involving carbonium ion mechanisms such as catalytic cracking (144). As a result extensive efforts have been undertaken to understand the nature of the catalytic sites that are responsible for the observed high activity. The crystalline nature of zeolites permits more definite characterization of the catalyst than is possible for amorphous acidic supports such as alumina and silica-alumina. Spectral techniques, in conjunction with structural information derived from X-ray diffraction studies, have led to at least a partial understanding of the nature of the acidic sites in the zeolite framework. [Pg.138]

Force field validation. In addition to ensuring that the force field reproduces results of QC calculations we have compared predictions of MD simulations using this force field with the available experimental data. Gas phase MD simulations using the quantum-chemistry based force field accurately reproduced the gas phase structure of DMNA as determined from electron diffraction studies. Liquid phase MD simulations of DMNA predicted the densities and solubility parameter as well as the activation energy and correlation times associated with molecular reorientation that are in good agreement with experimental data [34], As we will show in Section 4, comparison to structural and thermal data for the three pure crystalline polymorphs of HMX support the overall validity of our formulation and parameterization. [Pg.292]


See other pages where Diffraction, from crystalline supports is mentioned: [Pg.361]    [Pg.369]    [Pg.361]    [Pg.369]    [Pg.63]    [Pg.6036]    [Pg.6035]    [Pg.104]    [Pg.88]    [Pg.110]    [Pg.150]    [Pg.292]    [Pg.302]    [Pg.270]    [Pg.158]    [Pg.184]    [Pg.161]    [Pg.22]    [Pg.198]    [Pg.43]    [Pg.257]    [Pg.347]    [Pg.463]    [Pg.379]    [Pg.224]    [Pg.227]    [Pg.235]    [Pg.327]    [Pg.296]    [Pg.1331]    [Pg.138]    [Pg.172]    [Pg.115]    [Pg.297]    [Pg.220]    [Pg.36]    [Pg.31]    [Pg.456]    [Pg.321]    [Pg.116]    [Pg.130]    [Pg.277]    [Pg.121]    [Pg.57]   


SEARCH



Crystalline supports

Crystalline supports diffraction

Diffraction, from crystalline

© 2024 chempedia.info