Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction synthetic equivalents

Wada E., Yasuoka H., Pei W., Chin U., Kanemasa S. Lewis Add-Catalyzed Stereoselective Hetero Diels-Alder Reactions of (E)-l-Phenylsulfonyl-3-Alken-2-Ones With Vinyl Ethers. Synthetically Equivalent to Stereoselective Michael Type... [Pg.315]

Many other examples of synthetic equivalent groups have been developed. For example, in Chapter 6 we discussed the use of diene and dienophiles with masked functionality in the Diels-Alder reaction. It should be recognized that there is no absolute difference between what is termed a reagent and a synthetic equivalent group. For example, we think of potassium cyanide as a reagent, but the cyanide ion is a nucleophilic equivalent of a carboxy group. This reactivity is evident in the classical preparation of carboxylic acids from alkyl halides via nitrile intermediates. [Pg.1171]

Diels-Alder reactions are attractive for synthetic application because of the predictable regio- and stereochemistry. There are, however, limitations on the types of compounds that can serve as dienophiles or dienes. As a result, the idea of synthetic equivalence has been exploited by development of dienophiles and dienes that meet the reactivity requirements of the Diels-Alder reaction and can then be converted to the desired structure. For each of the dienophiles and dienes given below, suggest a Diels-Alder reaction and subsequent transformation(s) that would give a product not directly attainable by a Diels-Alder reaction. Give the structure of the diene or dienophile synthetic equivalent and indicate why the direct Diels-Alder reaction is not possible. [Pg.1264]

Alkyl and silyl nitronates are, in principle, /V-alkoxy and /V-silyloxynitrones, and they can react with alkenes in 1,3-dipolar cycloadditions to form /V-alkoxy- or /V-silyloxyisoxaz.olidine (see Scheme 8.25). The alkoxy and silyloxy groups can be eliminated from the adduct on heating or by acid treatment to form 2-isoxazolines. It should be noticed that isoxazolines are also obtained by the reaction of nitrile oxides with alkenes thus, nitronates can be considered as synthetic equivalents of nitrile oxides. Since the pioneering work by Torssell et al. on the development of silyl nitronates, this type of reaction has become a useful synthetic tool. Recent development for generation of cyclic nitronates by hetero Diels-Alder reactions of nitroalkenes is discussed in Section 8.3. [Pg.267]

All Diels-Alder reactions of tropones 51 as dienes with different types of dienophiles shown in Scheme 11 are accelerated by pressure, so that in some cases the desired cycloadducts are only formed at high pressure. An interesting synthetic equivalent of the unreactive acetylene in Diels-Alder syntheses is the oxanorbomadiene derivative 52 (Scheme 11 entry 2). 52 reacts with tropones forming the adducts 53, 54 and 55, which undergo a retro-Diels-Alder reaction leading to 56 and 57, the formal [4+2] cycloadducts of tropones to acetylene. [Pg.575]

The synthetic utility of the Diels-Alder reaction can be significantly expanded by the use of dienophiles that contain masked functionality and are the synthetic equivalents of unreactive or inaccessible species (see Section 13.2 for a more complete discussion of the concept of synthetic equivalents). For example, a-chloroacrylonitrile shows satisfactory reactivity as a dienophile. The a-chloronitrile functionality in the adduct can be hydrolyzed to a carbonyl group. Thus, a-chloroacrylonitrile can function as the equivalent of ketene,... [Pg.340]

The chiral organocopper compound (186) adds diastereoselectively to 2-methyl-2-cyclopentenone, allowing the preparation of optically active steroid CD-ring building blocks (Scheme 68).202-204 A related method was applied to a synthesis of the steroid skeleton via an intramolecular (transannular) Diels-Alder reaction of a macrocyclic precursor.203 Chiral acetone anion equivalents based on copper azaeno-lates derived from acetone imines were shown to add to cyclic enones with good selectivity (60-80% ee, after hydrolysis).206-208 Even better ee values are obtained with the mixed zincate prepared from (187) and dimethylzinc (Scheme 69). Other highly diastereoselective but synthetically less important 1,4-additions of chiral cuprates to prochiral enones were reported.209-210... [Pg.227]

The retrosynthesis of this compound by Batey and co-workers [96] recognized that the unprecedented hexahydropyrrolo[3,2-c]quinoline core could be synthesized using a three-component Pavarov hetero-Diels-Alder reaction [97]. For this synthetic strategy to be successful, however, reaction conditions that favor the exo approach of the dienophile over the endo approach had to be found. For this purpose, a variety of protic acids were tested, and it was found that the reaction was best carried out in the presence of camphorsulfonic acid (CSA). Indeed, a mixture of 4-aminobenzoate 200 and N-Cbz 2-pyrroline 201 were stirred at room temperature in the presence of catalytic CSA to afford exo cyclo-adduct 203 as the major product (Scheme 12.28). The N-Cbz 2-pyrroline served as both an aldehyde equivalent and a dienophile in this context. The Diels-Alder adduct 203 already bore all the requisite functionalities for the successful completion of the synthesis, which was achieved in six additional steps. [Pg.377]

Anodic dehydrogenations, e.g., oxidations of alcohols to ketones, have been treated in Sect. 8.1 and formation of olefins by anodic elimination of C02 and H+ from carboxylic acids was covered in Sect. 9.1. Therefore this section is only concerned with anodic bisdecarboxylations of v/odicarboxylic acids to olefins. This method gives usually good results when its chemical equivalent, the lead tetraacetate decarboxylation, fails. Combination of bisdecarboxylation with the Diels-Alder reaction or [2.2] -photosensitized cycloadditions provides useful synthetic sequences, since in this way the equivalent of acetylene can be introduced in cycloadditions. [Pg.93]

The ready evolution of the adducts into aromatic quinones by spontaneous sulfinyl elimination and further aromatization prompted the use of sulfinyl naphthoquinones as a synthetic equivalent of the unknown compound naph-thynoquinone [103]. For this purpose, sulfinyl quinones represent a convenient synthetic alternative to haloquinones. The highly regioselective course of the Diels-Alder reactions of 2-phenylsulfinyl-1,4-naphthoquinones (as well as their corresponding thioethers and sulfones) unsymmetrically substituted by... [Pg.58]

One aspect of antibody catalysis that tmly ignites the imagination of the chemical biologist is that these biocatalysts are not limited to reactions that have a natural enzymatic equivalent. The Diels-Alder reaction has immense synthetic utility however, this chemical transformation is extremely rare in nature. Furthermore, the reaction proceeds via an entropicaUy disfavored, highly organized pericyclic transition state (78). The programmability of a catalytic antibody has enabled the catalysis of the Diels-Alder reaction previously considered beyond the realm of possibility with a protein (79-84). [Pg.145]

Diels-Alder reactions. The reagent undergoes [4-i-2]cycloadditions to give adducts bearing an alkenylstannane moiety. Accordingly, it can be considered as a synthetic equivalent for acetylene and substituted alkynes (aryl, acyl, and haloalkynes). [Pg.163]


See other pages where Diels-Alder reaction synthetic equivalents is mentioned: [Pg.463]    [Pg.21]    [Pg.71]    [Pg.662]    [Pg.4]    [Pg.1335]    [Pg.31]    [Pg.348]    [Pg.325]    [Pg.127]    [Pg.519]    [Pg.318]    [Pg.621]    [Pg.1636]    [Pg.22]    [Pg.6]    [Pg.40]    [Pg.97]    [Pg.118]    [Pg.621]    [Pg.100]    [Pg.25]    [Pg.36]    [Pg.551]    [Pg.180]    [Pg.275]    [Pg.275]    [Pg.311]    [Pg.61]    [Pg.153]    [Pg.6]    [Pg.340]   
See also in sourсe #XX -- [ Pg.491 , Pg.493 ]




SEARCH



Diels-Alder equivalents

Synthetic equivalents

Synthetic reactions

© 2024 chempedia.info