Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diboron, bonding

The activation of the diboron bond by tr-bond metathesis between B2cat2 and a Pt—C bond was already observed by Iverson and Smith." They found that metallocyclopentane d5-[Pt(CH2)4(PPh3)2] could react cleanly with 2 molar equiv. of B2cat2 at 95 °C to form 05-[Pt(Bcat)2(PPh3)2] (10b) in 68% yield and catB(CH2)4Bcat in 47% (Scheme 15). [Pg.52]

Reductive methods form B—B bonds from B—X bonds. For B2X4 (X = Cl, Br, I) from BXj, an electric discharge is supplemented by the presence of a metal, or metal atoms, as halide scavenger. The passage of BX3 at low pressure through a rf discharge in the presence of Hg produces the diboron tetrahalides B2X4 at 300 mg h ... [Pg.35]

The metal catalysed hydroboration and diboration of alkenes and alkynes (addition of H-B and B-B bonds, respectively) gives rise to alkyl- or alkenyl-boronate or diboronate esters, which are important intermediates for further catalytic transformations, or can be converted to useful organic compounds by established stoichiometric methodologies. The iyn-diboration of alkynes catalysed by Pt phosphine complexes is well-established [58]. However, in alkene diborations, challenging problems of chemo- and stereo-selectivity control stiU need to be solved, with the most successful current systems being based on Pt, Rh and An complexes [59-61]. There have been some recent advances in the area by using NHC complexes of Ir, Pd, Pt, Cu, Ag and Au as catalysts under mild conditions, which present important advantages in terms of activity and selectivity over the established catalysts. [Pg.38]

The widespread use of aryl boronic acids or aryl boronates in various metal-catalysed C-C bond-forming reactions has created a substantial demand for these versatile nncleophiles. A general procedure for the preparation of these compounds, based on a NHC/Pd catalysed coupling, has been reported by Fiirtsner and co-workers nsing aryl chlorides and the tetraalkoxy diboron derivative 27 as conpling partners. Very good yields were obtained in several cases especially when electron poor aryls were employed [169]. Milder reaction conditions can be achieved when diazonium salts are used instead of chlorides [170] (Scheme 6.51). [Pg.184]

Addition of a boron-boron bond across a carbon-carbon triple bond is known for some 40 years since the finding that diboron tetrahalides add to alkenes and alkynes in the absence of catalysts.36 Although the reaction seemed to be potentially attractive, the instability of diboron tetrahalides was the critical drawback for the practical use in synthesis. In 1993, much more stable pinacol ester derivative of diboron was found to add to alkynes in the presence of platinum catalysts such as Pt(PPh3)4, Pt(CH2=CH2)(PPh3)2, and Pt(CO)2(PPh3)2 (Figure 1, Scheme 2).37,38 Other... [Pg.727]

A stoichiometric reaction of tetrakis(triphenylphosphine)platinum(0) with bis(pinacolato)diboron gives cis-diborylplatinum(n) complex in high yield (Scheme 3).38 The diborylplatinum complex then reacts with an alkyne, giving m-diboration product.40,41 These results indicate that the diboration proceeds through the general mechanism shown in Scheme 1 (E1 = E2 = Bpin), which involves the formation of diborylplatinum(n), insertion of an alkyne into the B-Pt bond, and reductive elimination. [Pg.728]

Reaction of bis(pinacolato)diboron to methylenecyclopropanes proceeds with cleavage of the proximal G-C bond of the cyclopropyl ring, giving 2,4-diboryl-l-alkenes (Equation (14)).74... [Pg.733]

Dibismuth ditellurium selenide, 4 25 Dibismuth ditellurium sulfide, 4 25 Dibismuthenes, 4 30-31 Dibismuthines, 4 29-30 Diblock copolymers, 7 646 23 367 Diborane, 13 619, 632, 634 Diborane(6), 4 141, 142, 184-185 bonding, 4 181 economic aspects, 4 228 physical properties of, 4 184t Diboron dioxide, 4 242t Diboron trioxide, 4 242t, 246 Dibromamine, 13 103 Dibromamine-B, 13 109 N, N-Dibromamines, 13 105 Dibromamine-T, 13 109 Dibromanine, 4 319 Dibromine oxide, 4 332... [Pg.262]

Miyaura and co-workers reported the platinum-catalyzed diboration of allenes with bis(pinacolato)diboron (Scheme 16.52) [57]. The catalytic cycle involves a sequence of oxidative addition of bis(pinacolato)diboron to Pt(0), insertion of an allene into the B-Pt bond and reductive elimination of an allylic boronate, re-producing the Pt(0) species. (Z)-Allylic boronates are formed stereoselectively in the reaction with monosubstituted allenes, which strongly suggests a pathway via a vinylplatinum species rather than a Jt-allylplatinum species. [Pg.946]

The direct borylation of arenes was catalyzed by iridium complexes [61-63]. Iridium complex generated from [lrCl(cod)]2 and 2,2 -bipyridine (bpy) showed the high catalytic activity of the reaction of bis (pinaco la to) diboron (B2Pin2) 138 with benzene 139 to afford phenylborane 140 (Equation 10.36) [61]. Various arenes and heteroarenes are allowed to react with B2Pin2 and pinacolborane (HBpin) in the presence of [lrCl(cod)]2/bipyridne or [lr(OMe)(cod)]2/bipyridine to produce corresponding aryl- and heteroarylboron compounds [62]. The reaction is considered to proceed via the formation of a tris(boryl)iridium(lll) species and its oxidative addition to an aromahc C—H bond. [Pg.268]

Although not fitting exactly into the scope of this book, the iridium catalyzed borylation of five membered heterocycles through C-H bond activation also deserves mentioning. A recent report by Miyaura disclosed the reaction of bis(pinacolato)diboron with heteroaromatic systems, where thiophene, fiirane and pyrrole were converted to their 2-boryl derivatives with good selectivity (6.86.), The yields presented refer to the diboron compound since the heterocycles were used in excess in all cases. Indole, benzofurane and benzothiophene were monoborylated with similar efficiency.116... [Pg.128]

Metalated ferrocenes have served as valuable intermediates for the synthesis of a number of other derivatives. Treatment of lithiated ferrocenes with tributyl borate followed by hydrolysis leads to ferroceneboronic acid (XXXIII) as well as the diboronic acid (73). Ferroceneboronic acid, like benzeneboronic acid, is readily cleaved by cupric bromide or cupric chloride to form the corresponding halo derivatives (XXXIV). Ferrocene-l,l -diboronic acid reacts in the same manner, and either one or two carbon-boron bonds can be cleaved. Further reactions of this type have led to a variety of mixed dihaloferrocenes (73, 75). [Pg.73]

Cross-coupling reactions 5-alkenylboron boron compounds, 9, 208 with alkenylpalladium(II) complexes, 8, 280 5-alkylboron boron, 9, 206 in alkyne C-H activations, 10, 157 5-alkynylboron compounds, 9, 212 5-allylboron compounds, 9, 212 allystannanes, 3, 840 for aryl and alkenyl ethers via copper catalysts, 10, 650 via palladium catalysts, 10, 654 5-arylboron boron compounds, 9, 208 with bis(alkoxide)titanium alkyne complexes, 4, 276 carbonyls and imines, 11, 66 in catalytic C-F activation, 1, 737, 1, 748 for C-C bond formation Cadiot-Chodkiewicz reaction, 11, 19 Hiyama reaction, 11, 23 Kumada-Tamao-Corriu reaction, 11, 20 via Migita-Kosugi-Stille reaction, 11, 12 Negishi coupling, 11, 27 overview, 11, 1-37 via Suzuki-Miyaura reaction, 11, 2 terminal alkyne reactions, 11, 15 for C-H activation, 10, 116-117 for C-N bonds via amination, 10, 706 diborons, 9, 167... [Pg.87]

The starting material bis(pinacolato)diboron is a poor Lewis acid and 1 B-NMR of KOAc and B2bin2 in DMSO-d6 shows no evidence of the coordination of the acetoxy anion to a boron atom leading to a tetrahedral activated species. However, the formation of an (acetato)palladium(II) complex after the oxidative addition of the halide influences the reaction rate of the transmetalation step. The Pd-O bond, which consists of a hard Lewis base with a soft Lewis acid, is more reactive than a Pd-X (X=Br, I) bond. In addition, the high oxophilicity of boron has to be considered as a driving force for the transmetalation step, which involves an acetato ligand. [Pg.156]


See other pages where Diboron, bonding is mentioned: [Pg.189]    [Pg.43]    [Pg.44]    [Pg.31]    [Pg.24]    [Pg.30]    [Pg.31]    [Pg.32]    [Pg.35]    [Pg.38]    [Pg.300]    [Pg.7]    [Pg.33]    [Pg.677]    [Pg.119]    [Pg.728]    [Pg.730]    [Pg.54]    [Pg.55]    [Pg.184]    [Pg.185]    [Pg.186]    [Pg.188]    [Pg.67]    [Pg.294]    [Pg.76]    [Pg.193]    [Pg.111]    [Pg.112]    [Pg.68]    [Pg.163]    [Pg.189]    [Pg.71]    [Pg.302]   
See also in sourсe #XX -- [ Pg.39 , Pg.40 ]

See also in sourсe #XX -- [ Pg.40 , Pg.41 ]




SEARCH



Diboron

© 2024 chempedia.info