Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diborane aromatic acids

Condensation of adipic acid derivative 17 with phenylethylamine in the presence of carbo-nyldiimidazole affords the bis-adipic acid amide 18. The synthesis is completed by reduction of the carbonyl groups with diborane followed by demethylation of the aromatic methoxy groups with hydrogen bromide the afford dopexamine (19) [3]. [Pg.22]

Reduction of aromatic carboxylic acids to alcohols can be achieved by hydrides and complex hydrides, e.g. lithium aluminum hydride 968], sodium aluminum hydride [55] and sodium bis 2-methoxyethoxy)aluminum hydride [544, 969, 970], and with borane (diborane) [976] prepared from sodium borohydride and boron trifluoride etherate [971, 977] or aluminum chloride [755, 975] in diglyme. Sodium borohydride alone does not reduce free carboxylic acids. Anthranilic acid was reduced to the corresponding alcohol by electroreduction in sulfuric acid at 20-30° in 69-78% yield [979],... [Pg.139]

In contrast to the usual reaction of aromatic aldehydes with cyclic ketones o-nitrobenzaldehyde condenses with 17-ketones to produce good yields of seco-acids, a reaction which has been applied to the preparation of 16-oxa-steroids. Thus, 3 -hydroxy-5a-androstan-17-one or its acetate affords the seco-steroid (153), which can be oxidised either as the free acid by ozone and alkaline hydrogen peroxide to the diacid (155) or, as its methyl ester (154), with chromium trioxide to the monomethyl ester (156). Diborane reduction of the diacid (155) or lithium aluminium hydride reduction of the dimethyl ester (157) gave the trans-diol (158), cyclised with toluene-p-sulphonic acid to 16-oxa-androstan-3)5-ol (159) or, by oxidation with Jones reagent to the lactone (152) (as 3-ketone) in quantitative yield. This lactone could also be obtained by lithium borohydride reduction of the monomethyl ester (156), whilst diborane reduction of (156) and cyclisation of the resulting (151) afforded the isomeric lactone (150). The diacid (155) reacted with acetic anhydride to afford exclusively the cis-anhydride (161) which was reduced directly with lithium aluminium hydride to the cis-lactone (160) or, as its derived dimethyl ester (162) to the cis-diol (163) which cyclised to 16-oxa-14)5-androstan-3) -ol (164). [Pg.428]

Under suitable conditions it is possible to isolate the A-substituted hydroxylamines that are formed as intermediates in the reduction of nitro compounds. For this purpose it is essential in the reduction of aromatic nitro compounds to work with neutral or nearly neutral solutions suitable reducing agents are hydrogen and platinum oxide catalysts in glacial acetic acid,82,83 zinc dust in ammonium chloride solution,84 aluminum amalgam,85 and ammonium sulfide.86 Aliphatic nitro compounds may be reduced as their alkali salts (nitronates) by diborane in tetrahydrofuran, then giving A-alkylhydroxyl-amines 87 for instance, A-cyclohexylhydroxylamine is thus obtained from nitrocyclohexane in 53% yield. However, aliphatic nitro compounds are converted into A-alkylhydroxylamines more simply by catalytic hydrogenation in the presence of palladium-barium sulfate unlike aromatic nitro compounds, aliphatic nitro compounds require an acid medium for reduction to hydroxylamines an oxalic acid medium has proved the most suitable. [Pg.563]

The boron trihalides, BXj, are Lewis acids (Chapter 6). These compounds are monomeric and planar—unlike diborane, B2H5, and the aluminum halides, AI2X5 (Section 3.1.4). As Lewis acids, boron trihalides can accept an electron pair from a halide to form tetrahalobo-rate ions, BX4. Boron halide catalysts act as halide ion acceptors, as in the Friedel-Crafts alkylation of aromatic hydrocarbons (in margin). [Pg.269]


See other pages where Diborane aromatic acids is mentioned: [Pg.73]    [Pg.49]    [Pg.228]    [Pg.237]    [Pg.261]    [Pg.290]    [Pg.446]    [Pg.194]    [Pg.510]    [Pg.446]    [Pg.296]    [Pg.277]    [Pg.482]    [Pg.28]    [Pg.459]   
See also in sourсe #XX -- [ Pg.139 , Pg.195 ]




SEARCH



Diboran

Diborane

© 2024 chempedia.info