Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium salts substitution reactions

Ring closure reactions taking place by intramolecular addition of an aromatic radical to a double bond have been widely studied on both their regio- and stereochemical aspects [93]. Aryl halides and diazonium salts substituted at ortho- position with a 0-allyl or TV-allyl chain were used for the preparation of 2,3-dihydrobenzofuranes and 2,3-dihydro-1/7-indoles under different reaction conditions. The reaction pattern involves the generation of an aryl radical 20, which reacts with the double bond in a 5-exo trig fashion to afford the exocyclic radical 21, plausible of reduction by a hydrogen donor to obtain the reduced-cyclized product 22 (Sch. 23) [93d,94]. [Pg.510]

Perhaps the most characteristic reaction of dihydrodiazepinium salts is their electrophilic substitution at position 6. Thus they are readily deuteriated,20 26 4142 halogenated,9 15 26 35 and nitrated,28 43 44 and couple with diazonium salts.45 Reaction occurs under conditions similar to those... [Pg.17]

The Sandmeyer reaction may also be applied to the preparation of nitriles. The solution of the diazonium salt is added to a solution of cuprous cyanide in excess of sodium or potassium cyanide solution (sometimes improved yields are obtained by substituting nickel cyanide for cuprous cyanide), for example CH3 CH, CH3... [Pg.594]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

The high reactivity of the 5-position in 1.3-selenazoles toward electrophilic substitution was also observed on azocoupling. By reacting molar quantities of an aqueous solution of a diazonium salt with an ethanolic solution of a 2-arylamino selenazole. for example, the corresponding 2-arylamino-5 azoselenazoles are formed in a smooth reaction (100). They deposit from the deeply colored solution and form intenselv red-colored compounds after their recrystallization from a suitable solvent (Scheme 36l. [Pg.246]

Other typical electrophilic aromatic substitution reactions—nitration (second entr-y), sul-fonation (fourth entry), and Friedel-Crafts alkylation and acylation (fifth and sixth entries)—take place readily and are synthetically useful. Phenols also undergo electrophilic substitution reactions that are limited to only the most active aromatic compounds these include nitrosation (third entry) and coupling with diazonium salts (seventh entry). [Pg.1002]

The arylation of furan by the Gomberg reaction has been carried out using a number of differently substituted diazonium salts. In... [Pg.145]

Arylamines are converted by diazotization with nitrous acid into arenediazonium salts, ArN2+ X-. The diazonio group can then be replaced by many other substituents in the Sandmeyer reaction to give a wide variety of substituted aromatic compounds. Aryl chlorides, bromides, iodides, and nitriles can be prepared from arenediazonium salts, as can arenes and phenols. In addition to their reactivity toward substitution reactions, diazonium salts undergo coupling with phenols and arylamines to give brightly colored azo dyes. [Pg.958]

Of course, in aqueous solution the reactants and the products exist wholly or partly in their ionized forms the acid, nitrite, and salt exist as H+X , Na+N02, and Na+X , while the diazonium salts are practically completely ionized and the amine is in equilibrium with the corresponding ammonium ion, Ar—NH3. The question of which of these various species are involved in the substitution proper will be dealt with in Chapter 3. Although it is generally desirable to introduce ionized forms into equations, this is inappropriate for the overall equation for the diazotization process, as will become apparent in the discussion of the reaction mechanism (Ch. 3) and from the following remarks. [Pg.12]

Broxton and Bunnett (1979) determined the products of the reaction of 4-chloro-3-nitrobenzenediazonium ions with ethoxide ion in ethanol, which is exactly analogous to the reaction in methanol discussed earlier in this section. These authors found 12.8% 4-chloro-3-nitrophenetole, 83% 2-chloronitrobenzene, and 0.8% 2-nitrophenetole. When the reaction was carried out in C2H5OD, the first- and second-mentioned products contained 99% D and 69% D respectively. Dediazoniation in basic ethanol therefore results in a higher yield of hydro-de-diazoniation with this diazonium salt compared with the reaction in methanol. This is probably due to the slightly higher basicity of the ethoxide ion and to the more facile formation of the radical CH3-CHOH (Packer and Richardson, 1975). Broxton and McLeish (1983 c) measured the rates of (Z) — (E) interconversion for some substituted 2-chlorophenylazo ethyl ethers in ethanol. [Pg.212]

The Pd°-catalyzed arylations using arenediazonium tetrafluoroborates are limited to those diazonium salts that can be manipulated at room temperature. The reaction can, if necessary, be performed at temperatures up to 50 °C by using a mixture of an arylamine and tert-butyl nitrite in chloroacetic acid or in a mixture of chloroacetic and acetic acid (Kikukawa et al., 1981a). Styrene reacted with fourteen arylamines in the presence of 5 mol-% Pd(dba)2 to give the corresponding substituted stilbenes in yields of 46-97%. It is important for good yields to carry out these reactions in an acidic system. Without acid the yield was low (11%), and diazo tars were also formed. [Pg.252]

Heteroaromatic diazonium salts can also be used for Gomberg-Bachmann aryla-tions. Fukata et al. (1973) refluxed 3,5-dimethyl-4-diazopyrazole (10.27) in benzene and obtained 3,5-dimethyl-4-phenylpyrazole (10.28, 36%), biphenyl (10.29, 17%), 3,5-dimethylpyrazole (10.30, 12%), and pyrazolo[4,3-c]pyrazole (10.31, 15%). In nitrobenzene the three isomeric 3,5-dimethyl-4-(nitrophenyl)-pyrazoles were formed in the ratio o m p = 10 3 3. In the opinion of Fukata et al. this ratio and the course of the reaction indicate a homolytic process. The present author thinks that the data do not exclude a competitive heterolytic reaction with the pyrazolyl cation, because equal amounts of substitution of nitrobenzene in the 3- and 4-positions are not typical for a homolytic aromatic substitution. [Pg.254]

More recently, Bagal and coworkers (Luchkevich et al., 1991) obtained similar results in a kinetic investigation of the coupling reactions of some substituted benzenediazonium ions with 1,4-naphtholsulfonic acid, and with 1,3,6-, 2,6,8-, and 2,3,6-naphtholdisulfonic acids. The kinetic results are consistent with the transient formation of an intermediate associative product. The maximum concentration of this product reaches up to 94% of the diazonium salt used in the case of the reaction of the 4-nitrobenzenediazonium ion with 1,4-naphtholsulfonic acid (pH 2-4, exact value not given). The authors assume that this intermediate is present in a side equilibrium, i. e., the mechanism of Scheme 12-77 mentioned above rather than that of Scheme 12-76, and that the intermediate is the O-azo ether. [Pg.366]

In these reactions, diazonium salts are cleaved to aryl radicals, in most cases with the assistance of copper salts. Reactions 14-17 and 14-18 may also be regarded as belonging to this category with respect to the attacking compound. For nucleophilic substitutions of diazonium salts, see 13-17-13-20. [Pg.934]

The first widely used intermediates for nucleophilic aromatic substitution were the aryl diazonium salts. Aryl diazonium ions are usually prepared by reaction of an aniline with nitrous acid, which is generated in situ from a nitrite salt.81 Unlike aliphatic diazonium ions, which decompose very rapidly to molecular nitrogen and a carbocation (see Part A, Section 4.1.5), aryl diazonium ions are stable enough to exist in solution at room temperature and below. They can also be isolated as salts with nonnucleophilic anions, such as tetrafluoroborate or trifluoroacetate.82 Salts prepared with 0-benzenedisulfonimidate also appear to have potential for synthetic application.83... [Pg.1027]


See other pages where Diazonium salts substitution reactions is mentioned: [Pg.180]    [Pg.61]    [Pg.28]    [Pg.950]    [Pg.230]    [Pg.425]    [Pg.107]    [Pg.40]    [Pg.551]    [Pg.784]    [Pg.950]    [Pg.133]    [Pg.144]    [Pg.149]    [Pg.126]    [Pg.288]    [Pg.65]    [Pg.116]    [Pg.171]    [Pg.196]    [Pg.206]    [Pg.221]    [Pg.344]    [Pg.369]    [Pg.375]    [Pg.381]    [Pg.389]    [Pg.164]    [Pg.850]   
See also in sourсe #XX -- [ Pg.982 , Pg.983 , Pg.984 , Pg.985 ]




SEARCH



Aryl diazonium salts substitution reactions

Diazonium reaction

Diazonium salts

Diazonium salts reactions

Diazonium salts, reaction with substituted nitriles yields

Substitution reactions of aryl diazonium salts

© 2024 chempedia.info