Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereomers esters

Three general methods exist for the resolution of enantiomers by Hquid chromatography (qv) (47,48). Conversion of the enantiomers to diastereomers and subsequent column chromatography on an achiral stationary phase with an achiral eluant represents a classical method of resolution (49). Diastereomeric derivatization is problematic in that conversion back to the desired enantiomers can result in partial racemization. For example, (lR,23, 5R)-menthol (R)-mandelate (31) is readily separated from its diastereomer but ester hydrolysis under numerous reaction conditions produces (R)-(-)-mandehc acid (32) which is contaminated with (3)-(+)-mandehc acid (33). [Pg.241]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

If a molecule contains several asymmetric C atoms, then the diastereomers show diastereotopic shifts. Clionasterol (28a) and sitosterol (28b) for example, are two steroids that differ only in the absolute configuration at one carbon atom, C-24 Differing shifts of C nuclei close to this asymmetric C atom in 28a and b identify the two diastereomers including the absolute configuration of C-24 in both. The absolute configurations of carboxylic acids in pyrrolizidine ester alkaloids are also reflected in diastereotopic H and C shifts which is used in solving problem 54. [Pg.55]

The stereoselective reactions in Scheme 2.10 include one example that is completely stereoselective (entry 3), one that is highly stereoselective (entry 6), and others in which the stereoselectivity is modest to low (entries 1,2,4, 5, and 7). The addition of formic acid to norbomene (entry 3) produces only the exo ester. Reduction of 4-r-butylcyclohexanone (entry 6) is typical of the reduction of unhindered cyclohexanones in that the major diastereomer produced has an equatorial hydroxyl group. Certain other reducing agents, particularly sterically bulky ones, exhibit the opposite stereoselectivity and favor the formation of the diastereomer having an axial hydroxyl groi. The alkylation of 4-t-butylpiperidine with benzyl chloride (entry 7) provides only a slight excess of one diastereomer over the other. [Pg.100]

One of the C(15) epimeric thio esters (B) cyclizes more slowly than the other (by a factor of 03. 15) due to steric repulsions involving the methyl group at C(15). After lactonization, the uncyclized diastereomer was recovered and used for the synthesis as following. [Pg.127]

For the kinetically controlled formation of 1,3-disubstituted tetrahydro-P-carbolines, placing both substituents in equatorial positions to reduce 1,3-diaxial interactions resulted in the cw-selectivity usually observed in these reactions." Condensation reactions carried out at or below room temperature in the presence of an acid catalyst gave the kinetic product distribution with the cw-diastereomer being the major product observed, as illustrated by the condensation of L-tryptophan methyl ester 41 with benzaldehyde. At higher reaction temperatures, the condensation reaction was reversible and a thermodynamic product distribution was observed. Cis and trans diastereomers were often obtained in nearly equal amounts suggesting that they have similar energies."... [Pg.474]

Conversely, when A-alkyl tryptophan methyl esters were condensed with aldehydes, the trans diastereomers were observed as the major products." X-ray-crystal structures of 1,2,3-trisubstituted tetrahydro-P-carbolines revealed that the Cl substituent preferentially adopted a pseudo-axial position, forcing the C3 substituent into a pseudo-equatorial orientation to give the kinetically and thermodynamically preferred trans isomer." As the steric size of the Cl and N2 substituents increased, the selectivity for the trans isomer became greater. A-alkyl-L-tryptophan methyl ester 42 was condensed with various aliphatic aldehydes in the presence of trifluoroacetic acid to give predominantly the trans isomers. ... [Pg.474]

Cyclocondensation of D-homocystine methyl ester hydrochloride (106) and aldehyde 105 in the presence of Ph3P yielded 9-(benzyloxycarbonyla-mino)-6-oxoperhydropyrido[2,l-f ][l,3]thiazine-4-carboxylate (107) and its diastereomer (97MIP4, 98USP5710129). [Pg.195]

The desilylacetylated qrcloadducts, produced from the reactions of trimethylsilyl-diazomethane with 3-crotonoyl-2-oxazolidinone or 3-crotonoyl-4,4-dimethyl-2-oxa-zolidinone, were transformed to methyl traws-l-acetyl-4-methyl-l-pyrazoline-5-car-boxylate through the reactions with dimethoxymagnesium at -20 °C. When the optical rotations and chiral HPLC data were compared between these two esters, it was found that these two products had opposite absolute stereochemistry (Scheme 7.39). The absolute configuration was identified on the basis of the X-ray-determined structure of the major diastereomer of cycloadduct derived from the reaction of trimethylsilyldiazomethane to (S)-3-crotonoyl-4-methyl-2-oxazolidi-none. [Pg.283]

Irradiation of complex 6 in the presence of ethyl acrylate provides the [6 + 2] 7t-adduct 9 as the single enrfo-diastereomer,276 which may also be obtained by heating a mixture of methyl l//-azepine-l-carboxylate with the ester in the presence of a catalytic amount of tricarbonyl(>]6-naphthalene)chromium(O).277... [Pg.197]

When aziridine-2-carboxylic ester 124 (Scheme 3.44) was treated with 1 equivalent of TFA, 125 was formed as a single diastereomer in 80% yield [57]. Use of 10 equivalents of TFA resulted in the formation of N-trifluoroacetyl product 126. This... [Pg.90]

Sturmer via the reaction of the chiral borate ester (45, 5S)-4,5-dicyclohexyl-2-isopropyloxy-1,3,2-dioxaborolane, and racemic Grignard reagent (l-methyl-2-butenyl)magnesium chloride16. A 97 3 mixture of (S)-4 and its tf-diastereomer was obtained in 89% yield. [Pg.318]

The matched double asymmetric reactions with (7 )-l and (a.R,S,S)-2 provide the (S,Z)-diastereomer with 94% and 96% selectivity, while in the mismatched reactions [(S)-l and (aS,R,R)-2] the (S.Z)-diastereomer is obtained with 77% and 92% selectivity, respectively. Interestingly, the selectivity of the reactions of (/ )-2,3-[isopropylidenebis(oxy)]propanal and 2 is comparable to that obtained in reactions of (7 )-2,3-[isopropylidenebis(oxy)]propanal and the much more easily prepared tartrate ester modified allylboronates (see Table 7 in Section 1.3.3.3.3.1.5.)41. However, 2 significantly outperforms the tartrate ester allylboronates in reactions with (5)-2-benzyloxypropanal (Section 1.3.3.3.3.1.5.), but not the chiral reagents developed by Brown and Corey42-43. [Pg.331]

A confusing picture emerges from the stereochemical outcome of the Mukaiyama variation of the aldol addition. The titanium(IV) chloride mediated addition of silylketene acetals to isobutyraldehyde confirms this statement while there is a reasonable correlation between the predominance of the (/t)-silylkctenc acetal 2 over the (Z)-acetal, and the favored formation of the an/t -carboxylic ester over the. svn-product, the pure (Z)-diastereomer displays no syn selectivity26. [Pg.457]

R)- and (,S )-1.1,2-Triphenyl-l,2-ethancdiol which are reliable and useful chiral auxiliary groups (see Section 1.3.4.2.2.3.) also perform ami-sclcctive aldol additions with remarkable induced stereoselectivity72. The (/7)-diastercomer, readily available from (7 )-methyl mandelate (2-hy-droxy-2-phcnylaeetate) and phenylmagnesium bromide in a 71 % yield, is esterified to give the chiral propanoate which is converted into the O-silyl protected ester by deprotonation, silylation, and subsequent hydrolysis. When the protected ester is deprotonated with lithium cyclohexyliso-propylamide, transmetalated by the addition of dichloro(dicyclopentadienyl)zirconium, and finally reacted with aldehydes, predominantly twm -diastereomers 15 result. For different aldehydes, the ratio of 15 to the total amount of the syn-diastereomers is between 88 12 and 98 2 while the chemical yields are 71 -90%. Furthermore, high induced stereoselectivity is obtained the diastereomeric ratios of ami-15/anti-16 arc between 95 5 and >98 2. [Pg.484]

On the other hand, syn-carboxylic acids are obtained from a deprotonation of the /5-silyl ester, giving the (E)-enolate, followed by reaction with different aldehydes and subsequent hydrogenolysis. No diastereomers of the aldol product are detected720. [Pg.486]

Crystalline, diastereomerieally pure syn-aIdols are also available from chiral A-acylsultams. lhe outcome of the induction can be controlled by appropriate choice of the counterion in the cnolate boron enolates lead, almost exclusively, to one adduct 27 (d.r. >97 3, major adduct/ sum of all other diastereomers) whereas mediation of the addition by lithium or tin leads to the predominant formation of adducts 28. Unfortunately, the latter reaction is plagued by lower induced stereoselectivity (d.r. 66 34 to 88 12, defined as above). In both cases, however, diastereomerieally pure adducts are available by recrystallizing the crude adducts. Esters can be liberated by treatment of the adducts with lithium hydroxide/hydrogen peroxide, whereby the chiral auxiliary reagent can be recovered106. [Pg.502]

When the related saccharin derived sultam (R)-29 is converted into the (Z)-boron enolate and subsequently treated with aldehydes,. vy -diastereomers 30 result almost exclusively. Thus, the diasteromeric ratios, defined as the ratio of the major product to the sum of all other stereoisomers, surpass 99 1. Hydroperoxide assisted saponification followed by esterification provides carboxylic esters 31 with recovery of sultam 32106a. [Pg.503]


See other pages where Diastereomers esters is mentioned: [Pg.2077]    [Pg.2076]    [Pg.2077]    [Pg.2076]    [Pg.328]    [Pg.70]    [Pg.244]    [Pg.246]    [Pg.436]    [Pg.438]    [Pg.246]    [Pg.1031]    [Pg.47]    [Pg.473]    [Pg.517]    [Pg.154]    [Pg.181]    [Pg.91]    [Pg.200]    [Pg.258]    [Pg.420]    [Pg.256]    [Pg.199]    [Pg.431]    [Pg.667]    [Pg.640]    [Pg.650]    [Pg.20]    [Pg.2]    [Pg.43]    [Pg.80]    [Pg.99]    [Pg.478]    [Pg.478]    [Pg.480]   
See also in sourсe #XX -- [ Pg.1645 , Pg.1646 , Pg.1647 , Pg.1648 , Pg.1649 , Pg.1650 , Pg.1651 , Pg.1652 ]




SEARCH



Diastereomer

Diastereomers

© 2024 chempedia.info