Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diamond Chains

John Wright worked for Diamond Chain Co. for 32 years. He worked in several different positions in both product engineering and applications engineering. John was General Product Manager when he retired from Diamond Chain in 1996. At that time he was responsible for aU of the technical information and assistance that Diamond Chain provided to customers and users. [Pg.393]

After retiring from Diamond Chain, John started his own technical consulting business. John now works with users on chain drive and conveyor problems. He trains plant engineering and maintenance personnel on selecting and caring for chain drives and conveyors. He also does some technical writing. [Pg.393]

With six electrons in a square net there also exist several ways to generate Peierls distortions [23]. Several were diagramed in 13.67-13.69. Each case generates classical structures where all of the atoms are two-coordinate and, therefore, follow the Zintl-Klemm formalism. Ladder structures, 14.3 I, can also form where the A atoms still are at a six electron count [23]. A diamond chain of vertex sharing... [Pg.378]

Figure C2.5.10. The figure gives tire foldability index ct of 27-mer lattice chains witli sets containing different number of amino acids. The sets are generated according to scheme described in [27], The set of 20 amino acids is taken as a standard sample. Each sequence witli 20 amino acids is optimized to fulfil tire stability gap [5]. The residues in tire standard samples are substituted witli four different sets containing a smaller number of amino acids [27]. The foldability of tliese substitutions is indicated by tire full circles. The open diamonds correspond to tire sequences witli same composition. However, tire amino acids are chosen from tire reduced representation and tire resultant sequence is optimized using tire stability gap [5]. Figure C2.5.10. The figure gives tire foldability index ct of 27-mer lattice chains witli sets containing different number of amino acids. The sets are generated according to scheme described in [27], The set of 20 amino acids is taken as a standard sample. Each sequence witli 20 amino acids is optimized to fulfil tire stability gap [5]. The residues in tire standard samples are substituted witli four different sets containing a smaller number of amino acids [27]. The foldability of tliese substitutions is indicated by tire full circles. The open diamonds correspond to tire sequences witli same composition. However, tire amino acids are chosen from tire reduced representation and tire resultant sequence is optimized using tire stability gap [5].
Well, that is the case at the low temperature, when the rubber has a proper modulus of a few GPa. As the rubber warms up to room temperature, the Van der Waals bonds melt. (In fact, the stiffness of the bond is proportional to its melting point that is why diamond, which has the highest melting point of any material, also has the highest modulus.) The rubber remains solid because of the cross-links which form a sort of skeleton but when you load it, the chains now slide over each other in places where there are no cross-linking bonds. This, of course, gives extra strain, and the modulus goes down (remember, E = [Pg.61]

X-ray diffraction peaks were rather broad with coherence lengths as low as 20 nm and this was attributed to rapid quenching. It was proposed that the carbon atoms are arranged in polyyne chains (n = 4) along the c-axis. The density of Carbolite (1.46 g-cm ) is lower than values for other carbynes and for diamond and graphite - hence the name - and this was attributed to a rapid quenching process. [Pg.8]

FIG. 11 Adsorbed amount as a function of bulk concentration for a non-interacting (empty symbols) and adsorbing (full symbols) wall. Diamonds and triangles correspond to a system with semi-rigid chains, circles and squares for flexible chains [28]. [Pg.533]

FIG. 13 Average center-of-mass position of flexible chains of length / with respect to the nearest solid surfaces for different /. Diamonds denote a system of semi-rigid chains in which the opposite effect is observed [28]. [Pg.535]

As an illustration of the biased sampling method in application to the problems of polymer chain adsorption on a hard wall we shall recall here briefly the procedure used on a diamond lattice [35]. Starting the chain at the origin, the first bond is fixed at the plane and all the following bonds are determined at random apart from the non-reversal condition. Suppose, after a certain number i of steps, that the (/+l)st monomer reaches the plane at z = 0 again. With = 4 on the diamond lattice one has the probability p = /3 for each new possible choice of a bond. Thus in... [Pg.560]

In a class of reahstic lattice models, hydrocarbon chains are placed on a diamond lattice in order to imitate the zigzag structure of the carbon backbones and the trans and gauche bonds. Such models have been used early on to study micelle structures [104], monolayers [105], and bilayers [106]. Levine and coworkers have introduced an even more sophisticated model, which allows one to consider unsaturated C=C bonds and stiffer molecules such as cholesterol a monomer occupies several lattice sites on a cubic lattice, the saturated bonds between monomers are taken from a given set of allowed bonds with length /5, and torsional potentials are introduced to distinguish between trans and "gauche conformations [107,108]. [Pg.643]

A fresh start and the true beginning of bicycles becoming a popular means of transportation can be traced to around 1886 and the efforts of John Kemp Starley and William Sutton. With equal-sized wheels, tubular steel diamond-shaped frame geometry, and a chain-and-sprocket chain drive to the rear wheel, the safety bike looked much like the modern version. [Pg.145]

The number of the constraints to chain mobility shown in Fig. 16 decreases with increasing temperature, reflecting the increase of the free volume. From a comparison of the spectra in Fig. 15 with line shapes calculated for flexible chains on a diamond lattice 23 (one can infer that the average length of the flexible unit increases from 3-5 bonds at room temperyture to about 10-15 bonds at 380 K. Our model thus can quantitatively explain the gradual increase of the number of conformations accessible to the chain motion. The earlier XH wide line data 72 are also in accord with our findings. [Pg.41]

There are more than a million known carbon compounds, of which thousands are vital to life processes. The carbon atom s unique and characteristic ability to form long stable chains makes carbon-based life possible. Elemental carbon is found free in nature in three allotropic forms amorphous carbon, graphite, and diamond. Graphite is a very soft material, whereas diamond is well known for its hardness. Curiosities in nature, the amounts of elemental carbon on Earth are insignificant in a treatment of the... [Pg.283]

Fig. 15. Tilt angles of the different molecular fragments as a function of temperature for polyphilic compound FsHnOCB aromatic core (circles), alkyl chain (crosses) and perfluoroalkyl chain (diamonds) (Ostrovskii et al. [45])... Fig. 15. Tilt angles of the different molecular fragments as a function of temperature for polyphilic compound FsHnOCB aromatic core (circles), alkyl chain (crosses) and perfluoroalkyl chain (diamonds) (Ostrovskii et al. [45])...
It has been found from MD simulations that friction of SAMs on diamond decreases with the increasing chain length of hydrocarbon molecules, but it remains relatively constant when the number of carbon atoms in the molecule chain exceeds a certain threshold [44], which confirmed the experimental observations. In simulations of sliding friction of L-B films, Glosli and McClelland [45] identified two different mechanisms of energy dissipation, namely, the viscous mechanism, similar to that in viscous liquid under shear, and the plucking mechanism related to the system instability that transfers the mechanical energy into heat, similar to that proposed in the Tomlinson model (see Chapter 9). On the basis of a series work of simulations performed in the similar... [Pg.90]

Another, simple form of elemental carbon would be chains formed from carbon atoms. As a prototype model a single>stranded chain is most suitable. If branching were to be considered, all intermediate forms up to and including the diamond and graphite like clusters would be included. For non branched chains, the two variants to choose from are a system of alternating singly and triply bonded carbon atoms (poly-ynes), and a system with all double bonds (cumulenes). Cumulene structures are assumed to be the preferred ones for odd membered chains, whereas the even ones may have some poly-yne character. Recent studies on linear Cg show that a cumulene-like structure is preferred, both at the SCF level and when correlation is accounted for(50). [Pg.43]

Results. Values computed on the John von Neumann Center s Control Data Corporation Cyber 205 are displayed and compared to literature results for other model-chains in Figure 3. Squares indicate values obtained in our Monte Carlo simulations, while diamonds are results of Priest s (12) analytical approximation for very narrow pores. [Pg.170]

FIG. 13 Contributions to the pressure between two —0.244 C/m charged planar surfaces separated by a 0.1 molar 2 2 RPM electrolyte. The open squares, circles, down-triangles, and diamonds are the kinetic, collision, electrostatic, and total pressures, respectively, from results of VaUeau et al. [98]. The corresponding solid symbols are unpublished results of Lee and Chan. The lines are calculations by the hypematted-chain (HNC) equation. [Pg.640]


See other pages where Diamond Chains is mentioned: [Pg.357]    [Pg.36]    [Pg.379]    [Pg.780]    [Pg.780]    [Pg.780]    [Pg.781]    [Pg.781]    [Pg.781]    [Pg.782]    [Pg.782]    [Pg.782]    [Pg.357]    [Pg.36]    [Pg.379]    [Pg.780]    [Pg.780]    [Pg.780]    [Pg.781]    [Pg.781]    [Pg.781]    [Pg.782]    [Pg.782]    [Pg.782]    [Pg.15]    [Pg.256]    [Pg.327]    [Pg.431]    [Pg.167]    [Pg.525]    [Pg.560]    [Pg.52]    [Pg.56]    [Pg.289]    [Pg.70]    [Pg.144]    [Pg.732]    [Pg.733]    [Pg.95]    [Pg.220]    [Pg.82]    [Pg.889]    [Pg.30]   
See also in sourсe #XX -- [ Pg.780 ]




SEARCH



© 2024 chempedia.info