Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dialkylzincs, reactions with aldehydes

Chiral aminoalcohols both catalyze reactions of simple dialkylzinc reagents with aldehydes and also induce a high degree of enantioselectivity, even when used in only catalytic amounts. Two examples are given below. Indicate how the aminoalcohols can have a catalytic effect. Suggest transition states for the examples show which would be in accord with the observed enantioselectivity. [Pg.474]

In the course of the continuing study [9a,b] on the enantioselective addition of dialkylzincs to aldehydes by using chiral amino alcohols such as diphenyl(l-methyl-2-pyrrolidinyl)methanol (45) (DPMPM) [48] A. A -dibutylnorephedrine 46 (DBNE) [49], and 2-pyrrolidinyl-l-phenyl-1-propanol (47) [50] as chiral catalysts, Soai et al. reacted pyridine-3-carbaldehyde (48) with dialkylzincs using (lS,2/ )-DBNE 46, which gave the corresponding chiral pyridyl alkanols 49 with 74-86% ee (Scheme 9.24) [51]. The reaction with aldehyde 48 proceeded more rapidly (1 h) than that with benzaldehyde (16 h), which indicates that the product (zinc alkoxide of pyridyl alkanol) also catalyzes the reaction to produce itself. This observation led them to search for an asymmetric autocatalysis by using chiral pyridyl alkanol. [Pg.713]

Since the addition of dialkylzinc reagents to aldehydes can be performed enantioselectively in the presence of a chiral amino alcohol catalyst, such as (-)-(1S,2/ )-Ar,A -dibutylnorephedrine (see Section 1.3.1.7.1.), this reaction is suitable for the kinetic resolution of racemic aldehydes127 and/or the enantioselective synthesis of optically active alcohols with two stereogenic centers starting from racemic aldehydes128 129. Thus, addition of diethylzinc to racemic 2-phenylpropanal in the presence of (-)-(lS,2/ )-Ar,W-dibutylnorephedrine gave a 75 25 mixture of the diastereomeric alcohols syn-4 and anti-4 with 65% ee and 93% ee, respectively, and 60% total yield. In the case of the syn-diastereomer, the (2.S, 3S)-enantiomer predominated, whereas with the twtf-diastereomer, the (2f ,3S)-enantiomer was formed preferentially. [Pg.23]

Kitamura and Noyori have reported mechanistic studies on the highly diastere-omeric dialkylzinc addition to aryl aldehydes in the presence of (-)-i-exo-(dimethylamino)isoborneol (DAIB) [33]. They stated that DAIB (a chiral (i-amino alcohol) formed a dimeric complex 57 with dialkylzinc. The dimeric complex is not reactive toward aldehydes but a monomeric complex 58, which exists through equilibrium with the dimer 57, reacts with aldehydes via bimetallic complex 59. The initially formed adduct 60 is transformed into tetramer 61 by reaction with either dialkylzinc or aldehydes and regenerates active intermediates. The high enantiomeric excess is attributed to the facial selectivity achieved by clear steric differentiation of complex 59, as shown in Scheme 1.22. [Pg.30]

Pu and co-workers incorporated atropisomeric binaphthols in polymer matrixes constituted of binaphthyl units, the macromolecular chiral ligands obtained being successfully used in numerous enantioselective metal-catalyzed reactions,97-99 such as asymmetric addition of dialkylzinc reagents to aldehydes.99 Recently, they also synthesized a stereoregular polymeric BINAP ligand by a Suzuki coupling of the (R)-BINAP oxide, followed by a reduction with trichlorosilane (Figure 10).100... [Pg.453]

Reactions of organozincates with aldehydes and ketones were thoroughly investigated by Richey and co-workers (Scheme 115). In contrast to dialkylzincs, which do not give addition products with ketones and even aldehydes... [Pg.389]

Compared with aldehydes, ketones and esters are less reactive electrophiles in the addition of dialkylzincs. This makes it possible to perform a unique reaction that cannot be done with alkyllithium or Grignard reagents, which are too reactive nucleophiles. For example, Watanabe and Soai reported enantio- and chemoselective addition of dialkylzincs to ketoaldehydes and formylesters using chiral catalysts, affording enantiomerically enriched hydroxyketones 30 (equation 12)43 and hydroxyesters 31 in 91-96% , respectively (equation 13). The latter are readily transformed into chiral lactones 3244. [Pg.561]

Transition State Models. The stoichiometry of aldehyde, dialkylzinc, and the DAIB auxiliary strongly affects reactivity (Scheme 9) (3). Ethylation of benzaldehyde does not occur in toluene at 0°C without added amino alcohol however, addition of 100 mol % of DAIB to diethylzinc does not cause the reaction either. Only the presence of a small amount (a few percent) of the amino alcohol accelerates the organometallic reaction efficiently to give the alkylation product in high yield. Dialkyl-zincs, upon reaction with DAIB, eliminate alkanes to generate alkylzinc alkoxides, which are unable to alkylate aldehydes. Instead, the alkylzinc alkoxides act as excellent catalysts or, more correctly, catalyst dimers (as shown below) for reaction between dialkylzincs and aldehydes. The unique dependence of the reactivity on the stoichiometry indicates that two zinc atoms per aldehyde are responsible for the alkyl transfer reaction. [Pg.141]

In the (—)-DAIB-catalyzed reaction of diethylzinc and benzaldehyde, the rate is first-order in the amino alcohol. The initial alkylation rate is influenced by the concentration of diethylzinc and benzaldehyde but soon becomes unaffected by increased concentration. Thus, under the standard catalytic reaction conditions, the reaction shows saturation kinetics the rate is zeroth order with respect to both dialkylzinc reagent and aldehyde substrate. These data support the presence of the equilibrium of A-D, and alkyl transfer occurs intramolecularly from the dinuclear mixed-ligand complex D. This is the stereo-determining and also turnover-limiting step. [Pg.339]

In another study Feringa et al. [20] reported a catalytic enantioselective three-component tandem conjugate addition-aldol reaction of dialkyl zincs. Here, zinc enolates were generated in situ via catalytic enantioselective Michael addition of dialkylzinc compounds to cydohexenone in the presence of a chiral Cu catalyst. Their diastereoselective reaction with an aldehyde then gave trans-2,3-disubstituted cyclohexanones in up to 92% yields and up to >99% ees (Scheme 9.11). [Pg.282]

The reaction of these dialkylzincs with aldehydes in the presence of the catalyst 2 of Yoshioka and Ohno (16,103), derived from (lR,2R)-cyclohcxancdiamine, proceeds in 86-97% ee. [Pg.231]


See other pages where Dialkylzincs, reactions with aldehydes is mentioned: [Pg.104]    [Pg.164]    [Pg.168]    [Pg.106]    [Pg.379]    [Pg.397]    [Pg.501]    [Pg.339]    [Pg.560]    [Pg.566]    [Pg.145]    [Pg.148]    [Pg.341]    [Pg.157]    [Pg.489]    [Pg.110]    [Pg.5235]    [Pg.5236]    [Pg.243]    [Pg.244]    [Pg.268]    [Pg.165]    [Pg.1311]    [Pg.1318]    [Pg.1333]    [Pg.317]    [Pg.95]    [Pg.143]    [Pg.28]    [Pg.100]    [Pg.250]    [Pg.272]    [Pg.275]   
See also in sourсe #XX -- [ Pg.737 ]




SEARCH



Dialkylzinc

Dialkylzinc, reaction with

Dialkylzincs

Reactions dialkylzincs

© 2024 chempedia.info