Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.4- Diacetoxy-2-alkenes

A selective catalytic reaction that gives high yields of 1,4-diacetoxy-2-alkenes occurs in acetic acid in the presence of a lithium carboxylate and benzoquinone. The latter reagents act as... [Pg.458]

Alkenes can also be oxidized with metallic acetates such as lead tetraacetate or thallium(III) acetate " to give bis-acetates of glycols. Oxidizing agents such as benzoquinone, Mn02, or 02, along with palladium acetate, have been used to convert conjugated dienes to l,4-diacetoxy-2-alkenes (1,4 addition). ... [Pg.1051]

Stereo- and regioselective palladium-catalyzed oxidation of 1,3-dienes in acetic acid to give l,4-diacetoxy-2-alkenes has been accomplished using Mn02 and catalytic amounts of p-benzoquinone (BQ)11. The reaction can be made to take place with cis- or trans-1,4-diacetoxylation across the diene in cyclic systems as shown in equation 6. [Pg.696]

Acetoxylation proceeds mostly via the radical cation of the olefin. Aliphatic alkenes, however, undergo allylic substitution and rearrangement predominantly rather than addition [224, 225]. Aryl-substituted alkenes react by addition to vic-disubstituted acetates, in which the dia-stereoselectivity of the product formation indicates a cyclic acetoxonium ion as intermediate [226, 227]. In acenaphthenes, the cis portion of the diacetoxy product is significantly larger in the anodic process than in the chemical ones indicating that some steric shielding through the electrode is involved [228]. [Pg.426]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

The in situ regeneration of Pd(II) from Pd(0) should not be counted as being an easy process, and the appropriate solvents, reaction conditions, and oxidants should be selected to carry out smooth catalytic reactions. In many cases, an efficient catalytic cycle is not easy to achieve, and stoichiometric reactions are tolerable only for the synthesis of rather expensive organic compounds in limited quantities. This is a serious limitation of synthetic applications of oxidation reactions involving Pd(II). However it should be pointed out that some Pd(II)-promoted reactions have been developed as commercial processes, in which supported Pd catalysts are used. For example, vinyl acetate, allyl acetate and 1,4-diacetoxy-2-butene are commercially produced by oxidative acetoxylation of ethylene, propylene and butadiene in gas or liquid phases using Pd supported on silica. It is likely that Pd(OAc)2 is generated on the surface of the catalyst by the oxidation of Pd with AcOH and 02, and reacts with alkenes. [Pg.419]

The regioselectivity of the Paterno-Biichi reaction with acyclic enol ethers is substantially higher than with the corresponding unsymmetrically alkyl-substituted olefins. This effect was used for the synthesis of a variety of 3-alkoxyoxetanes and a series of derivatives [55]. The diastereoisomeric cis-and tnms-l-methoxy-l-butenes were used as substrates for the investigation of the spin state influence on reactivity, regio- and stereoselectivity [56]. The use of trimethylsilyloxyethene 62 as electron rich alkene is advantageous and several 1,3-anhydroapiitol derivatives such as 63 could be synthesized via photocycloaddition with l,3-diacetoxy-2-propanone 61 (Sch. 17) [57]. [Pg.101]

The radical azidoselenenylation of alkenes can be achieved by reacting diphenyl diselenide with (diacetoxy)iodo-benzene in the presence of sodium azide. The unusual regiochemistry of this reaction is due to the radical... [Pg.478]

Sodium perborate (NaB03 nH20 n = 1-4) is a cheap and widely used industrial chemical. If sulfuric acid is added to a mixture of the perborate and an alkene in acetic anhydride, an exothermic reaction occurs leading to anti addition to the double bond with formation of the corresponding l-hydroxy-2-ace-toxy derivative in moderate yield. Peroxybis(diacetoxy)borane, (AcO)2BOOB(OAc)2, may be the reactive species in this oxidation and it seems likely that the epoxide is an intermediate. [Pg.446]

Some mono- and di-substituted alkenes have been converted to 1,2-diacetoxy compounds by heating them in acetic acid solution with ammonium persulfate and a catalytic amount of iron(II) sulfate. Anti addition is observed with 1,2-disubstituted altenes with trisubstituted alkenes conqrlex mixtures are obtained. [Pg.447]

Acyl esters of vicinal diols are obtained by the reaction of alkenes with metal carboxylates [436]. Lead tetraacetate in acetic acid at 70 °C converts 1,2-dihydronaphthalene to rranj-l,2-diacetoxy-l,2,3,4-tetrahy-dronaphthalene in 72% yield [436]. The reaction is not always stereospecific. Cyclohexene treated with thallium triacetate gives a mixture of diastereomers in varying ratios, depending on reaction conditions, and byproducts as a result of rearrangements (equation 89) [411],... [Pg.74]

Some polyfunctional isoxazolines of generic structure 44 were obtained in 78-91% yields by treatment of aryl aldoximes 42 with Baylis-Hillman adducts 43 in the presence of diacetoxy iodobenzene (DIB). The reaction is completely diastereoselective and involves the formation of nitrile oxides from aldoximes followed by 1,3-DC with the activated alkenes. Under the same conditions, ketoximes afforded only deoximation products <04TL7347>. [Pg.242]

The ylide was prepared by reaction of ethyl (nonafluorobutyl-sulfonyl)acetate with diacetoxy iodobenzene. Subsequent reaction with alkenes in presence of Cu(OTf)2 afforded the y-lactones. [Pg.187]


See other pages where 1.4- Diacetoxy-2-alkenes is mentioned: [Pg.181]    [Pg.29]    [Pg.825]    [Pg.111]    [Pg.210]    [Pg.201]    [Pg.1168]    [Pg.120]    [Pg.165]    [Pg.410]    [Pg.90]    [Pg.526]    [Pg.1244]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



1.2- diacetoxy

© 2024 chempedia.info