Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection system nanosecond laser flash photolysis

Laser flash photolysis experiments48,51 are based on the formation of an excited state by a laser pulse. Time resolutions as short as picoseconds have been achieved, but with respect to studies on the dynamics of supramolecular systems most studies used systems with nanosecond resolution. Laser irradiation is orthogonal to the monitoring beam used to measure the absorption of the sample before and after the laser pulse, leading to measurements of absorbance differences (AA) vs. time. Most laser flash photolysis systems are suitable to measure lifetimes up to hundreds of microseconds. Longer lifetimes are in general not accessible because of instabilities in the lamp of the monitoring beam and the fact that the detection system has been optimized for nanosecond experiments. [Pg.176]

Nanosecond Flash Photolysis Measurements.—A computer-controlled ns flash photolysis spectrometer has been described. " The system was employed in a study of the photochemistry of xanthene dyes in solution. A nitrogen laser was used to provide 2—3 mJ excitation pulses at 337.1 nm for a ns flash photolysis study of electron-transfer reactions of phenolate ions with aromatic carbonyl triplets. " A PDP II computer was used to control the transient digitizer employed for detection, and to subsequently process the data. A nanosecond transient absorption spectrophotometer has been constructed using a tunable dye laser in a pulse-probe conflguration with up to 100 ns probe delayA method for reconstructing the time-resolved transient absorption was discussed and results presented for anthracene in acetonitrile solution. The time-resolution of ns flash photolysis may be greatly increased by consideration of the integral under the transient absorption spectrum. Decay times comparable to or shorter than the excitation flash may be determined by this method. [Pg.30]

The conditions which determine whether flash photolysis can be used to smdy a given chemical system are (i) a precursor of the species of kinetic interest has to absorb light (normally from a pulsed laser) (ii) this species is produced on a timescale that is short relative to its lifetime in the system. Current technical developments make it easy to study timescales of nanoseconds for production and analysis of species, and the use of instrumentation with time resolution of picoseconds is already fairly common. In certain specific cases, as we will see in the last part of this chapter, it is possible to study processes on timescales greater than a few femtoseconds. Once the species of interest has been produced, it is necessary to use an appropriate rapid detection method. The most common technique involves transient optical absorption spectroscopy. In addition, luminescence has been frequently used to detect transients, and other methods such as time-resolved resonance Raman spectroscopy and electrical conductivity have provided valuable information in certain cases. [Pg.62]


See other pages where Detection system nanosecond laser flash photolysis is mentioned: [Pg.217]    [Pg.173]    [Pg.848]    [Pg.175]    [Pg.147]    [Pg.212]    [Pg.93]    [Pg.218]    [Pg.88]    [Pg.90]    [Pg.4376]    [Pg.208]    [Pg.254]    [Pg.4375]    [Pg.512]    [Pg.134]   
See also in sourсe #XX -- [ Pg.850 , Pg.851 ]




SEARCH



Detection laser

Detection systems

Flash photolysis

Laser detected

Laser detection systems

Laser flash photolysis

Nanosecond

Nanosecond flash photolysis

Nanosecond laser flash photolysis

© 2024 chempedia.info