Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Desymmetrization Dihydroxylation

Benzyloxy-2-methylpropane-l,2-diol, a desymmetrized form of 2-methylpropane-1,2,3-triol with its terminal hydroxy being protected as a benzyl ether, was prepared using the B. subtilis epoxide hydrolase-catalyzed enantioselective hydrolysis of the racemic benzyloxymethyl-l-methyloxirane readily available from methallyl chloride and benzyl alcohol. The preparation of the racemic epoxide, a key intermediate, was described in Procedures 1 and 2 (Sections 5.6.1 and 5.6.2), its overall yield being 78 %. The combined yield of enantiomerically pure (7 )-3-benzyloxy-2-methylpropane-l,2-diol was 74 % from ( )-benzyloxymethyl-l-methyloxirane, as described in Procedures 3-5 (Sections 5.6.3 and 5.6.5), with the overall procedures leading to the biocatalytic dihydroxylation of benzyl methallyl ether . [Pg.197]

Landais has extended his desymmetrization of dienes from dihydroxylation approaches to a cyclopropanation reaction. A Cu-pybox complex provides the highest enantioselectivities and good diastereoselectivity in the asymmetric cyclopropanation of the silyl-substituted cyclopentadiene 210 ... [Pg.306]

Asymmetric epoxidation, dihydroxylation, aminohydroxylation, and aziridination reactions have been reviewed.62 The use of the Sharpless asymmetric epoxidation method for the desymmetrization of mesa compounds has been reviewed.63 The conformational flexibility of nine-membered ring allylic alcohols results in transepoxide stereochemistry from syn epoxidation using VO(acac)2-hydroperoxide systems in which the hydroxyl group still controls the facial stereoselectivity.64 The stereoselectivity of side-chain epoxidation of a series of 22-hydroxy-A23-sterols with C(19) side-chains incorporating allylic alcohols has been investigated, using m-CPBA or /-BuOOH in the presence of VO(acac)2 or Mo(CO)6-65 The erythro-threo distributions of the products were determined and the effect of substituents on the three positions of the double bond (gem to the OH or cis or trans at the remote carbon) partially rationalized by molecular modelling. [Pg.184]

The proper stereochemistry was achieved by enzyme catalyzed desymmetrization of the prochiral 1,3-diol 30. Candida antarctica lipase (CAL)-catalyzed transesterification yielded the monoacetate 31, which gave rise to the methyl with the proper stereochemistry 32. The generation of the desired chiral epoxide 35 was achieved by asymmetric dihydroxylation employing AD-mix-a,42 followed by epoxide formation. Base-catalyzed etherification yielded the mixture of the enantiopure (+)-heliannuol A and (-)-heliannuol D. Unfortunately these compounds correspond to the opposite d/l series and correspond to the enantiomers of the natural products (-)-heliannuol A and (+)-heliannuol D (Fig. 5.6.A). [Pg.125]

This collection begins with a series of three procedures illustrating important new methods for preparation of enantiomerically pure substances via asymmetric catalysis. The preparation of 3-[(1S)-1,2-DIHYDROXYETHYL]-1,5-DIHYDRO-3H-2.4-BENZODIOXEPINE describes, in detail, the use of dihydroquinidine 9-0-(9 -phenanthryl) ether as a chiral ligand in the asymmetric dihydroxylation reaction which is broadly applicable for the preparation of chiral dlols from monosubstituted olefins. The product, an acetal of (S)-glyceralcfehyde, is itself a potentially valuable synthetic intermediate. The assembly of a chiral rhodium catalyst from methyl 2-pyrrolidone 5(R)-carboxylate and its use in the intramolecular asymmetric cyclopropanation of an allyl diazoacetate is illustrated in the preparation of (1R.5S)-()-6,6-DIMETHYL-3-OXABICYCLO[3.1. OJHEXAN-2-ONE. Another important general method for asymmetric synthesis involves the desymmetrization of bifunctional meso compounds as is described for the enantioselective enzymatic hydrolysis of cis-3,5-diacetoxycyclopentene to (1R,4S)-(+)-4-HYDROXY-2-CYCLOPENTENYL ACETATE. This intermediate is especially valuable as a precursor of both antipodes (4R) (+)- and (4S)-(-)-tert-BUTYLDIMETHYLSILOXY-2-CYCLOPENTEN-1-ONE, important intermediates in the synthesis of enantiomerically pure prostanoid derivatives and other classes of natural substances, whose preparation is detailed in accompanying procedures. [Pg.294]

Precursor of Useful Chiral Ligands. OPEN is widely used for the preparation of chiral ligands. Organometallic compounds with these ligands act as useful reagents or catalysts in asymmetric induction reactions such as dihydroxylation of olefins, transfer hydrogenation of ketones and imines, Diels-Alder and aldol reactions, desymmetrization of meso-diols to produce chiral oxazolidinones, epoxidation of simple olefins, benzylic hydroxylation, and borohydride reduction of ketones, imines, and a,p-unsaturated carboxylates. ... [Pg.307]

A non-carbohydrate route to both enantiomers of levoglucosenone has also been reported in which the furan derivative 31 was desymmetrized using Sharp-less asymmetric dihydroxylation methodology. ... [Pg.178]

Syntheses of 3-deoxy-2-ulosonic acids have again been the subject of a number of reports. The cycloheptene derivative 46 was made by enzymic desymmetrization of the neso-compound and employed in a multistep synthesis of the doivadve 47 of 3-deoxy-D-ara6ino-heptulosonic acid (Dah), dihydroxylation being used to establish the required chirality at C-S and C-6 of the sugar relative to that at C-4.39 if, in the chemistry of Scheme 6, the final rhodium-catalysed reaction was replaced by MCPBA oxidation, Kdo could be obtained. Application of the earlier stages of... [Pg.206]

The diol 4 had never been described in the literature before we used it in the synthesis of 1. Initially, we tried to synthesize it using an enantioselective Diels-Alder reaction between a chiral fumarate equivalent 5 (Scheme 10.1) and butadiene 6, followed by double-bond dihydroxylation [41]. However, a more effective protocol for large-scale synthesis could finally be based on the procedure shown in Scheme 10.2, leading to enantiomericaUy pure (lS,2S)-cyclohex-4-ene-1,2-dicarboxylic acid 7 [42]. Here, a Bolm desymmetrization of tetrahydrophthahc anhydride 8 using quinine leads to monoester 9 in 89% ee. The monoester 9, in turn, can be epimerized to the trans isomer 10 which is hydrolyzed to obtain 7, after crystallization. This intermediate is the starting material for the synthesis of 4 and of other conformationally constrained DCCHD to be used as monosaccharide mimics [43, 44]. Our current best protocol for the large-scale synthesis of 7 is reported at the end of this chapter. [Pg.290]

The requisite dihydroxyketones are commonly assembled via iterative aldol coupling reactions [1], but other methods including Nef reactions [17,18], acetylide additions [19, 20], 1,3-dipolar nitrile oxide cycloadditions [21], iterative alkylation of dithianes [22-28], hydrazones [29], oximes [30], nitriles [31], or dihalomethylene species [32-34], cross-metathesis/hydroboration/oxidation [35], iterative substitution of a xanthate [36], dihydroxylation/desymmetrization of alkenes [37], Homer-Wadsworth-Emmons olehnations [38, 39], allylmetallations [40], and alkyne-alkyne cross-coupling [41] have also been reported. [Pg.193]


See other pages where Desymmetrization Dihydroxylation is mentioned: [Pg.234]    [Pg.55]    [Pg.146]    [Pg.190]    [Pg.198]    [Pg.352]    [Pg.467]    [Pg.387]    [Pg.670]    [Pg.930]    [Pg.467]    [Pg.106]    [Pg.63]    [Pg.658]    [Pg.27]    [Pg.413]    [Pg.393]    [Pg.1]    [Pg.611]    [Pg.5]    [Pg.3]   
See also in sourсe #XX -- [ Pg.201 , Pg.202 ]




SEARCH



Desymmetrization

© 2024 chempedia.info