Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Degree of interaction

Reactor Configuration. The horizontal cross-sectional area of a reactor is a critical parameter with respect to oxygen mass-transfer effects in LPO since it influences the degree of interaction of the two types of zones. Reactions with high intrinsic rates, such as aldehyde oxidations, are largely mass-transfer rate-limited under common operating conditions. Such reactions can be conducted effectively in reactors with small horizontal cross sections. Slower reactions, however, may require larger horizontal cross sections for stable operation. [Pg.342]

Properties of Denture-Base Matena/s. Physical properties of acryflc denture-base materials are given in Table 12 (204). Mechanical properties of denture bases can vary considerably, and depend on composition, mode of polymerization, and degree of interaction with the oral environment. [Pg.489]

All PVC plasticisers have a solubility parameter similar to that of PVC. It appears that differences between liquids in their plasticising behaviour is due to differences in the degree of interaction between polymer and plasticiser. Thus such phosphates as tritolyl phosphate, which have a high degree of interaction, gel rapidly with polymer, are more difficult to extract with solvents and give compounds with the highest brittle point. Liquids such as dioctyl adipate, with the lowest interaction with polymer, have the converse effect whilst the phthalates, which are intermediate in their degree of interaction, are the best allround materials. [Pg.330]

Both the stabilizing mechanisms are limited by the degree of interaction and miscibility between the two unlike polar (PVC) and nonpolar (PBR) phases. [Pg.333]

An important consideration is the effect of filler and its degree of interaction with the polymer matrix. Under strain, a weak bond at the binder-filler interface often leads to dewetting of the binder from the solid particles to formation of voids and deterioration of mechanical properties. The primary objective is, therefore, to enhance the particle-matrix interaction or increase debond fracture energy. A most desirable property is a narrow gap between the maximum (e ) and ultimate elongation ch) on the stress-strain curve. The ratio, e , eh, may be considered as the interface efficiency, a ratio of unity implying perfect efficiency at the interfacial Junction. [Pg.715]

From what has been said it is obvious that the environmental conditions within the human body are quite hostile and vary according to the degree of interaction with the body and the implant and the degree of trauma and infection associated with the implantation procedure. [Pg.472]

The parameter n reflects the measure of deviation of the system from the behavior of the monomeric acid where n = 1, i.e., it characterizes the degree of interaction between the neighboring functional groups of the macroion. The value of n depends on the structure of the polyelectrolyte and the nature of the counterion pK = pK0 — log (1 — a)/a is the negative decadic logarithm of the effective dissociation constant of the carboxylic CP depending on a. [Pg.12]

Unlike gas chromatography, in which the mobile phase, i.e. the carrier gas, plays no part in the separation mechanism, in HPLC it is the relative interaction of an analyte with both the mobile and stationary phases that determines its retention characteristics. Hence, it is the varying degrees of interaction of different analytes with the mobile and stationary phases which determines whether or not they will be separated by a particular HPLC system. [Pg.29]

The GA is a heterogeneous material having both hydrophilic and hydrophobic affinities. GA physicochemical responses can be handled depending on the balance of hydrophilic and hydrophobic interactions. GA functional properties are closely related to its structure, which determines, for example, solubility, viscosity, degree of interaction with water and oil in an emulsion, microencapsulation ability, among others. [Pg.7]

Lifetimes of free atoms and radicals account for the degree of interaction of these particles with an ambient medium and with each other. Due to high reaction capability of active particles in gaseous and, especially, in liquid media, their lifetimes are rather small. In gaseous phase, at small pressures these lifetimes are determined by heterogeneous recombination of these particles on vessel walls and by interaction of these particles with an adsorbed layer. At high gas pressures, the lifetimes are determined by bulk recombination and chemical interaction with ambient molecules. [Pg.219]

Apart from paints, electrokinetic separations find limited application for synthetic polymers [905], mainly because of solvent compatibility (CE is mostly an aqueous technique) and competition of SEC (reproducibility). Reasons in favour of the use of CE-like methods for polymer analysis are speed, sample throughput and low solvent consumption. Nevertheless, CE provides some interesting possibilities for polymer separation. Electrokinetic methods have been developed based on differences in ionisation, degree of interaction with solvent constituents, and molecular size and conformation. [Pg.277]

When the metal complexes constitute the peripheral units (Fig. lb) and/or belong to the branches (Fig. 1 c) of a dendrimer, a number of equivalent metal-based centers are present since dendrimers are usually highly symmetric species by their own nature. The metal-based centers may or may not interact, depending on distance and nature of the connector units. Multielectron redox processes can therefore be observed, whose specific patterns are related to the degree of interaction among the various units. [Pg.206]

In dendrimers based on metals as branching centers (Fig. 1 d), the electrochemical behavior is even more complex since (i) each unit of the dendrimer is electro active, (ii) the chemical nature of the metal-based units constituting the dendrimer may be different, (iii) chemically equivalent units can be different from the topological viewpoint, and (iv) the degree of interaction among the moieties depends on their chemical nature and distance. [Pg.206]

Diffuse reflectance spectroscopy was used to screen the possible interactions between a large number of adjuvants and several dyes [23]. It was concluded that supposedly inert excipients (such as starch or lactose) were capable of undergoing significant reactions with the dyes investigated (Red No. 3, Blue No. 1, and Yellow No. 5). For adjuvants containing metal ions (zinc oxide, or calcium, magnesium, and aluminum hydroxides), the degree of interaction could be considerable. It was concluded from these studies that dye-excipient interactions could also be responsible for the lack of color stability in certain tablet formulations. [Pg.45]


See other pages where Degree of interaction is mentioned: [Pg.2789]    [Pg.29]    [Pg.329]    [Pg.306]    [Pg.171]    [Pg.97]    [Pg.695]    [Pg.49]    [Pg.6]    [Pg.51]    [Pg.653]    [Pg.517]    [Pg.223]    [Pg.350]    [Pg.257]    [Pg.945]    [Pg.162]    [Pg.128]    [Pg.11]    [Pg.368]    [Pg.95]    [Pg.65]    [Pg.99]    [Pg.602]    [Pg.93]    [Pg.390]    [Pg.178]    [Pg.110]    [Pg.63]    [Pg.342]    [Pg.445]    [Pg.121]    [Pg.36]    [Pg.37]    [Pg.38]    [Pg.22]    [Pg.173]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



© 2024 chempedia.info