Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deficiency fatty acid oxidation

What would be the consequences of a deficiency in vitamin Bi2 for fatty acid oxidation What metabolic intermediates might accumulate ... [Pg.800]

Increased fatty acid oxidation is a characteristic of starvation and of diabetes meUims, leading to ketone body production by the Ever (ketosis). Ketone bodies are acidic and when produced in excess over long periods, as in diabetes, cause ketoacidosis, which is ultimately fatal. Because gluconeogenesis is dependent upon fatty acid oxidation, any impairment in fatty acid oxidation leads to hypoglycemia. This occurs in various states of carnitine deficiency or deficiency of essential enzymes in fatty acid oxidation, eg, carnitine palmitoyltransferase, or inhibition of fatty acid oxidation by poisons, eg, hypoglycin. [Pg.180]

Camitine deficiency can occur particularly in the newborn—and especially in preterm infants—owing to inadequate biosynthesis or renal leakage. Losses can also occur in hemodialysis. This suggests a vitamin-fike dietary requirement for carnitine in some individuals. Symptoms of deficiency include hypoglycemia, which is a consequence of impaired fatty acid oxidation and hpid accumulation with muscular weakness. Treatment is by oral supplementation with carnitine. [Pg.187]

Inherited CPT-I deficiency affects only the fiver, resulting in reduced fatty acid oxidation and ketogenesis, witfi fiypoglycemia. CPT-II deficiency affects pri-... [Pg.187]

Carnitine deficiency is a clinically useful term describing a diversity of biochemical disorders affecting fatty acid oxidation. Carnitine deficiency may be tissue-specific or generalized. [Pg.700]

IWo of the most common genetic deficiencies affecting fatty acid oxidation are ... [Pg.228]

A method for quantitative acylcamitine profiling in human skin fibroblasts using unlabelled palmitic acid diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. [Pg.9]

In 1955, Fritz determined that carnitine plays an essential role in fatty acid -oxidation (FAO), and in 1973 the first two clinically relevant disorders affecting this pathway were described primary carnitine deficiency by Engel and Angelini, and carnitine palmitoyltransferase (CPT) type II (CPT-II) deficiency by DiMauro and DiMauro [6, 7]. To date, more than 20 different enzyme deficiency states affecting fatty acid transport and mitochondrial / -oxidaLion have been described [8] and additional enzymes involved in this pathway are still being discovered [9, 10]. [Pg.171]

Shen JJ, Matern D, Millington DS, et al (2000) Acylcarnitines in fibroblasts of patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and other fatty acid oxidation disorders. J Inherit Metab Dis 23 27-44... [Pg.204]

In mitochondria, there are four fatty acyl CoA dehydrogenase species, each of which has a specificity for either short-, mediurr-long-, or very-long-chain fatty acids. MCAD deficiency, an autos mal, recessive disorder, is one of the most common inborn errors of metabolism, and the most common inborn error of fatty add oxidation, being found in 1 in 12,000 births in the west, and 1 in 40,000 worldwide. It causes a decrease in fatty acid oxidation and severe hypoglycemia (because the tissues cannot obtain full ener getic benefit from fatty acids and, therefore, must now rely on glu cose). Treatment includes a carbohydrate-rich diet. [Note Infants are particularly affected by MCAD deficiency, because they rely for their nourishment on milk, which contains primarily MCADs. [Pg.190]

One of the most frequent defects of fatty acid oxidation is deficiency of a mitochondrial acyl-CoA dehydrogenase.50 If the long-chain-specific enzyme is lacking, the rate of P oxidation of such substrates as octanoate is much less than normal and afflicted individuals excrete in their urine hexanedioic (adipic), octanedioic, and decanedioic acids, all products of co oxidation.54 Much more common is the lack of the mitochondrial medium-chain acyl-CoA dehydrogenase. Again, dicarboxylic acids, which are presumably generated by 0) oxidation in the peroxisomes, are present in blood and urine. Patients must avoid fasting and may benefit from extra carnitine. [Pg.945]

A deficiency of very long-chain fatty acid oxidation in peroxisomes is apparently caused by a defective transporter of the ABC type (Chapter 8).55 The disease, X-linked adrenoleukodystrophy (ALD), has received considerable publicity because of attempts to treat it with "Lorenzo s oil," a mixture of triglycerides of oleic and the C22 monoenoic erucic acid. The hope has... [Pg.945]

Glucagon exerts a ketogenic action on the liver which is more pronounced in insulin-deficient states. This action is thought to be due mainly to the inhibition of acetyl-CoA carboxylase with resulting decrease in malonyl-CoA. Malonyl-CoA is an inhibitor of carnitine acyltransferase I which is the rate-limiting step for mitochondrial fatty acid oxidation. A decrease in malonyl-CoA is thus postulated to lead to overproduction of acetyl-CoA which is then condensed to form ketone bodies. [Pg.257]

Several classes of inborn errors of metabolism in addition to inborn errors of urea synthesis can cause neonatal hyperammonemia. These include organic acidurias, fatty acid oxidation defects, amino acidopathies, and mitochondrial respiratory chain disorders. All of these disorders have a number of features in common. Labor and delivery tend to be normal, and there are no predisposing risk factors. Clinical features present after 24 h of life and are progressive. They are inherited, and thus a family history of previously affected children or neonatal deaths may be present. While most are inherited in an autosomally recessive manner, ornithine tran-scarbamoylase (OTC) deficiency is X linked, and a family history of affected males in the maternal pedigree is not uncommon. [Pg.197]

Figure 32-5. P-oxidation and ketogenesis in the liver. The rate-limiting step in fatty acid oxidation and subsequent ketone body production is the activity of carnitine acyltrans-ferase I (CAT I).The activity of CAT I is inhibited by malonyl-CoA. Insulin deficiency results in inhibition of acetyl-CoA carboxylase, decreased levels of maloyl-CoA, and thus increased activity of CAT-I.Adapted from Foster and McGarry (1983). Figure 32-5. P-oxidation and ketogenesis in the liver. The rate-limiting step in fatty acid oxidation and subsequent ketone body production is the activity of carnitine acyltrans-ferase I (CAT I).The activity of CAT I is inhibited by malonyl-CoA. Insulin deficiency results in inhibition of acetyl-CoA carboxylase, decreased levels of maloyl-CoA, and thus increased activity of CAT-I.Adapted from Foster and McGarry (1983).

See other pages where Deficiency fatty acid oxidation is mentioned: [Pg.52]    [Pg.151]    [Pg.348]    [Pg.401]    [Pg.348]    [Pg.401]    [Pg.52]    [Pg.151]    [Pg.348]    [Pg.401]    [Pg.348]    [Pg.401]    [Pg.942]    [Pg.702]    [Pg.706]    [Pg.228]    [Pg.134]    [Pg.131]    [Pg.118]    [Pg.48]    [Pg.137]    [Pg.196]    [Pg.485]    [Pg.541]    [Pg.655]    [Pg.231]    [Pg.124]    [Pg.405]    [Pg.192]    [Pg.62]    [Pg.102]    [Pg.104]    [Pg.105]    [Pg.197]    [Pg.203]    [Pg.220]    [Pg.259]   
See also in sourсe #XX -- [ Pg.192 ]

See also in sourсe #XX -- [ Pg.192 ]

See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Fatty acid oxidation disorders deficiency

Fatty acids deficiency

Fatty acids oxidation

Fatty acids, oxidation with amino acid deficiency

Oxidized fatty acids

© 2024 chempedia.info