Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decomposition redox conditions

Selected Biogeochemical Properties Related to Soil Organic Matter Decomposition in Wetland Soils Incubated under Various Redox Conditions... [Pg.165]

Attempts to prepare thiosulfuric acid by acidification of stable thiosulfates are invariably thwarted by the ready decomposition of the free acid in the presence of water. The reaction is extremely complex and depends on the conditions used, being dominated by numerous redox interconversions amongst the products these can include sulfur (partly as cyclo-Sf,), SO2, H2S, HiS,. H2SO4 and various polythionates In the absence of water, however, these reactions are avoided and the parent acid is more stable it decomposes quantitatively below 0° according... [Pg.714]

According to these results it is favorable to apply semiconductor electrodes which exhibit a large overvoltage concerning the anodic decomposition but not for the oxidation of a redox couple. Unfortunately, there are only few examples which fulfil this condition. Another example was found with n-GaAs in the presence of Eu ... [Pg.97]

By-products from capture of nucleophilic anions may be observed.53 Phenols can be formed under milder conditions by an alternative redox mechanism.98 The reaction is initiated by cuprous oxide, which effects reduction and decomposition to an aryl radical, and is run in the presence of Cu(II) salts. The radical is captured by Cu(II) and converted to the phenol by reductive elimination. This procedure is very rapid and gives good yields of phenols over a range of structural types. [Pg.1030]

E. L. Shock (1990) provides a different interpretation of these results he criticizes that the redox state of the reaction mixture was not checked in the Miller/Bada experiments. Shock also states that simple thermodynamic calculations show that the Miller/Bada theory does not stand up. To use terms like instability and decomposition is not correct when chemical compounds (here amino acids) are present in aqueous solution under extreme conditions and are aiming at a metastable equilibrium. Shock considers that oxidized and metastable carbon and nitrogen compounds are of greater importance in hydrothermal systems than are reduced compounds. In the interior of the Earth, CO2 and N2 are in stable redox equilibrium with substances such as amino acids and carboxylic acids, while reduced compounds such as CH4 and NH3 are not. The explanation lies in the oxidation state of the lithosphere. Shock considers the two mineral systems FMQ and PPM discussed above as particularly important for the system seawater/basalt rock. The FMQ system acts as a buffer in the oceanic crust. At depths of around 1.3 km, the PPM system probably becomes active, i.e., N2 and CO2 are the dominant species in stable equilibrium conditions at temperatures above 548 K. When the temperature of hydrothermal solutions falls (below about 548 K), they probably pass through a stability field in which CH4 and NII3 predominate. If kinetic factors block the achievement of equilibrium, metastable compounds such as alkanes, carboxylic acids, alkyl benzenes and amino acids are formed between 423 and 293 K. [Pg.191]

Case 1 appears to accurately predict the observed dependence on persulfate concentration. Furthermore, as [Q]+otal approaches [KX], the polymerization rate tends to become independent of quat salt concentration, thus qualitatively explaining the relative insensitivity to [Aliquat 336]. The major problem lies in explaining the observed dependency on [MMA]. There are a number of circumstances in free radical polymerizations under which the order in monomer concentration becomes >1 (18). This may occur, for example, if the rate of initiation is dependent upon monomer concentration. A particular case of this type occurs when the initiator efficiency varies directly with [M], leading to Rp a [M]. Such a situation may exist under our polymerization conditions. In earlier studies on the decomposition of aqueous solutions of potassium persulfate in the presence of 18-crown-6 we showed (19) that the crown entered into redox reactions with persulfate (Scheme 3). Crematy (16) has postulated similar reactions with quat salts. Competition between MMA and the quat salt thus could influence the initiation rate. In addition, increases in solution polarity with increasing [MMA] are expected to exert some, although perhaps minor, effect on Rp. Further studies are obviously necessary to fully understand these polymerization systems. [Pg.124]

The other simple peptide complex e.g. [Fe(Z-Cys-Ala-OMe)4]2- did not exhibit such a reversible redox couple under similar conditions. The Fe(lll) complexes of simple peptide thiolates or cysteine alkyl esters are found to be thermally quite unstable and decompose by oxidaticxi at the thiolate ligand by intramolecular electron transfer. Thus the macro-ring chelation of the Cys-Pro-Leu-Cys ligand appears to stabilize the Fe(in) state. The stability of the Fe(ni) form as indicated by the cyclic voltamnoogram measurements and by the visible spectra of the Fe(in) peptide complexes suggests that the peptide prevents thermal and hydrolytic decomposition of the Fe-S bond because of the hydrophobicity and steric bulk of the Pro and Leu residues (3,4). [Pg.294]

By-products from capture of nucleophilic anions may be observed.79 Phenols can be formed under milder conditions by an alternative redox mechanism.90 91 The reaction is initiated by cuprous oxide, which effects reduction and decomposition to an aryl radical. [Pg.717]


See other pages where Decomposition redox conditions is mentioned: [Pg.29]    [Pg.817]    [Pg.162]    [Pg.57]    [Pg.23]    [Pg.204]    [Pg.211]    [Pg.220]    [Pg.3584]    [Pg.3612]    [Pg.176]    [Pg.153]    [Pg.157]    [Pg.160]    [Pg.706]    [Pg.426]    [Pg.105]    [Pg.549]    [Pg.623]    [Pg.214]    [Pg.241]    [Pg.215]    [Pg.262]    [Pg.252]    [Pg.188]    [Pg.190]    [Pg.231]    [Pg.189]    [Pg.765]    [Pg.356]    [Pg.83]    [Pg.162]    [Pg.236]    [Pg.117]    [Pg.399]    [Pg.172]    [Pg.30]    [Pg.133]    [Pg.134]    [Pg.134]    [Pg.250]    [Pg.738]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Redox conditions

© 2024 chempedia.info