Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decomposition reaction study

The decomposition of silver oxide was one of the earhest solid reactions studied. It is smoothly reversible below 200°C (392°F) with equation for partial pressure of oxygen,... [Pg.2122]

An intensely colored by-product of the photolysis reaction of methyl-2-azidobenzoate has been identified as the first known derivative of 3,3 -diazaheptafulvalene 70 (94LA1165). Its molecular mass was established by elemental analysis and mass spectroscopy as that of a formal nitrene dimer, whereas and NMR studies demonstrated the twofold symmetry as well as the existence of a cross-conjugated 14 7r-electron system in 70. Involving l-azido-2,3-dimethoxy-5,6-dimethoxycarbonylbenzene in thermal decomposition reactions, the azaheptafulvalene 71 could be isolated and characterized spectroscopically and by means of X-ray diffraction. Tliis unusual fulvalene can be regarded as a vinylogous derivative of azafulvalenes (96JHC1333) (Scheme 28). [Pg.136]

The catalytic activity of PCSs results from their semiconductor properties. The first studies in this field date from 1959—1961. Thus, we have demonstrated catalytic activity of products of the thermal transformation of PAN in the decomposition reactions of hydrogen peroxide, hydrazine hydrate, and formic acid270, 271. There is an indication of catalytic activity of poly(aminoquinone) in the reactions of the hydrogen peroxide decomposition272. ... [Pg.36]

The similar phenomenon of poisoning in situ of a palladium catalyst by hydrogen which was in this case the product of a reaction was observed by Brill and Watson (37). The reaction studied was the decomposition of formic acid... [Pg.263]

Like nitrocellulose, nitroglycerin also undergoes a slow first-order exothermic decomposition at temperatures below 140°C. As the pressure is increased, this decomposition reaction is followed by a sudden explosive reaction. Evidence suggests that the explosive reaction is autocatalyzed by the accumulation of N02. The combined results of several studies indicate that... [Pg.31]

Heath and Majer (H3) have recently used a mass spectrometer to study the decomposition of ammonium perchlorate. Decomposition was detected in the range from 110° to 120°C. At this temperature, there were ions in the mass spectrum caused by NH3, HC104, Cl2, HC1, nitrogen oxides, and 02. The appearance of the species NO, N02,02, and Cl2 in the decomposition products under very low pressure (i.e., in the absence of gas-phase molecular collisions) indicates that the principal decomposition reactions take place in the crystal and not in the gas phase. [Pg.36]

The thermal decomposition reactions of KN3, T1N3, and AgN3 have been studied in the corresponding halide matrices [301]. The formation of NCCT from trapped C02 was described and labelling with ISN established that only a single end-N atom of the azide ion was involved in NCO formation. The photodecomposition of PbN6 and the effects of dopants have been followed [302] by the changes produced in the near and the far infrared. [Pg.29]

Kabanov and Zingel [352] have recently published a comprehensive review of studies of the effect of application of continuous or periodic electric fields on the reactant during thermal decomposition of a solid. They comment on the superficiality of most of the work discussed. The application of an electric field is contrasted with the effect of selected additives as a means of obtaining information on the mechanism of a decomposition reaction. Both may alter the concentration of free electrons in the solid, but the effect of the field is more apparent in the vicinity of the surface. An example of an investigation of the effect of an electric field on a reaction is to be found in the work of the Panafieu et al. [373] on KN3. [Pg.33]

The high values of E generally characteristic of the decomposition reactions of metal oxyhalides are widely interpreted as evidence that the initial step in anion breakdown is the rupture of the X—O bond and that the energy barrier to this reaction is not very sensitive to the properties of the cation present. Information of use in the formulation of reaction mechanisms has been obtained from radiolytic studies of oxyhalogen salts [887-889],... [Pg.190]

This section is almost entirely concerned with the kinetics of solid phase decompositions of classical coordination compounds, since most of the information available refers to these substances. The hydrates, in which the ligands are water only, are correctly classified under the present heading, but as their dehydrations have been so intensively studied, a separate section (Sect. 1) has been devoted to the removal of water from crystalline hydrates. A separate water elimination step also preceeds many decomposition reactions. [Pg.231]

In a DTA study [1193] of decomposition reactions in Ag2C03 + CaC03 mixtures, the presence of a response peak, absent on heating the silver salt alone, resulted in the identification of the double salt Ag2C03 2 CaC03, stable at <420 K. One important general consideration which arises from this observation is that the formation of a new phase, by direct interaction between the components of a powder mixture, could easily be overlooked and, in the absence of such information, serious errors could be introduced into attempts to formulate a reaction mechanism from observed kinetic characteristics. Due allowance for this possibility must be included in the interpretation of experimental data. [Pg.266]

More recently Hand et al. (ref. 9) have studied the decomposition reaction of N-chloro-a-amino acid anions in neutral aqueous solution, where the main reaction products are carbon dioxide, chloride ion and imines (which hydrolyze rapidly to amine and carbonyl products). They found that the reaction rate constant of decarboxylation was independent of pH, so they ruled out a proton assisted decarboxylation mechanism, and the one proposed consists of a concerted decarboxylation. For N-bromoamino acids decomposition in the pH interval 9-11 a similar concerted mechanism was proposed by Antelo et al. (ref. 10), where the formation of a nitrenium ion (ref. 11) can be ruled out because it is not consistent with the experimental results. Antelo et al. have also established that when the decomposition reaction takes place at pH < 9, the disproportionation reaction of the N-Br-amino acid becomes important, and the decomposition goes through the N,N-dibromoamino acid. This reaction is also important for N-chloroamino compounds but at more acidic pH values, because the disproportionation reaction... [Pg.227]

Dependence of the reaction rate constant on the temperature. Activation parameters. As we saw in the study of the influence of OH" concentration on the reaction rate constant, the main path for the decomposition reaction of N-... [Pg.233]

Many of the early workers who studied the thermal decomposition reactions of diazocarbonyl compounds found that the addition of copper metal or copper salts allowed the reaction to be achieved at a lower temperature,<63AG(E)565, 64CB2628, 73JOU431> although no detailed study of this catalytic effect was undertaken. Alonso and Jano studied the copper-salt reaction of ethyl diazopyruvate 26 with acetonitrile and benzonitrile. The... [Pg.8]

The trialkyltrlazenes are essentially protected diazo-nlum ions. They decompose cleanly and quantitatively to the dlazonlum ions and the corresponding amines over a wide pH range (M). Good kinetic data were obtained over the range of pH 6.9 - 8.3. In more acid solutions, the reactions are too rapid to measure by conventional kinetics. The decomposition reaction is subject to general acid catalysis. Thus, the trialkyltrlazenes will be a useful tool for the study of the reactive intermediates produced by the metabolism of dialkyl-nitrosamines. [Pg.12]

Catalysts include oxides, mixed oxides (perovskites) and zeolites [3]. The latter, transition metal ion-exchanged systems, have been shown to exhibit high activities for the decomposition reaction [4-9]. Most studies deal with Fe-zeolites [5-8,10,11], but also Co- and Cu-systems exhibit high activities [4,5]. Especially ZSM-5 catalysts are quite active [3]. Detailed kinetic studies, and those accounting for the influence of other components that may be present, like O2, H2O, NO and SO2, have hardly been reported. For Fe-zeolites mainly a first order in N2O and a zero order in O2 is reported [7,8], although also a positive influence of O2 has been found [11]. Mechanistic studies mainly concern Fe-systems, too [5,7,8,10]. Generally, the reaction can be described by an oxidation of active sites, followed by a removal of the deposited oxygen, either by N2O itself or by recombination, eqs. (2)-(4). [Pg.641]

Following the synthesis of the first methyl-palladium NHC complexes it was subsequently found that the complexes undergo a facile thermal decomposition process in which the NHC is lost as 2-methylimidazolium salt and the Pd is rednced to Pd(0) (Scheme 13.1) [15-17]. In ensuing studies investigating the reaction behavionr of a range of hydrocarbyl Pd and Ni carbene complexes, it was found that the decomposition reaction is ubiquitous. It occurs with varying ease, for mono-NHC, bis-NHC and donor functionalised-NHC complexes [16-23]. [Pg.300]

A study showed that, if the salt present decomposes at 180°C, its temperature of decomposition reaches 74-80 C when it is in a solution with DMSO. The compounds formed are the ones that are mentioned, but formol is in the form of polymer. There is a substantial gas release during the decomposition. This gas certainly caused the sealed tube to detonate. Another decomposition reaction has been suggested ... [Pg.347]

We have studied the thermal decomposition of diaryl ether in detail, since the cleavage of ether linkage must be one of the most responsible reactions for coal liquefaction among the various types of decomposition reaction and we found that the C-0 bond of polynucleus aromatic ethers is cleaved considerably at coal liquefaction temperature. [Pg.286]


See other pages where Decomposition reaction study is mentioned: [Pg.398]    [Pg.398]    [Pg.1028]    [Pg.451]    [Pg.16]    [Pg.15]    [Pg.32]    [Pg.37]    [Pg.7]    [Pg.10]    [Pg.115]    [Pg.173]    [Pg.263]    [Pg.285]    [Pg.42]    [Pg.231]    [Pg.336]    [Pg.645]    [Pg.1099]    [Pg.1129]    [Pg.259]    [Pg.235]    [Pg.395]    [Pg.28]    [Pg.298]    [Pg.123]    [Pg.390]    [Pg.323]    [Pg.331]    [Pg.102]    [Pg.296]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Decomposition reactions

© 2024 chempedia.info