Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

DABCO catalysts Michael addition

The solvent and temperature effects for the Michael addition of amidoxime 7 to DMAD were probed because the reaction itself occurs without any other catalysts. As shown in Table 6.2, the reaction gave a high ratio of 8E in strongly aprotic polar solvents such as DMF and DMSO (entry 1 and 2). 8E was also found as the major product in MeCN (entry 3), dichloromethane (entry 4), and xylenes (entry 5). To our delight, the desired 8Z was obtained as the major component in methanol (entry 6). The stereoselectivity of 8Z versus 8E was better at low temperature (entry 7). A similar result was observed when the reaction was run in THF or dichlo-roethane in the presence of a catalytic amount of DABCO (entries 9 and 10). [Pg.171]

Michael addition. DABCO is a particularly effective catalyst for Michael addition of /f-keto thiolesters to a,/ -unsaturated esters and ketones. The addition to enones provides an attractive route to 1,5-diketones that can undergo annelation to fused or... [Pg.419]

While THF or CH2CI2 are the most commonly used solvents, the solubility of the reagents or the catalyst may dictate the use of other solvents. Reactions are usually slow in DMF and in CH3CN when DABCO, DBU or DMAP were used as catalysts. An often-observed byproduct of the aza-MBH reaction is a bridged compound of type 97. This product is the result of a stepwise addition of 95 to 75 via the Mannich reaction, followed by an intramolecular conjugated addition (Michael addition) of the formed anion to the a,/ -unsaturated ketone, and thus due to the elevated basicity of the catalyst (Scheme 5.21) [92]. [Pg.174]

In this subsection, we describe a couple of examples taken from the recent literature, in which the Baylis-Hillman reaction has been employed for the construction of new carbon-carbon bonds. The Baylis-Hillman reaction proceeds in a catalytic cycle propagated by a nucleophilic catalyst (584). The nucleophilic catalyst initiates the cycle by Michael addition to a double bond bearing an EWG (586 or 590). The carbon a to the EWG is acidic and may react with an electrophile. Finally, the nucleophilic catalyst is eliminated, completing the cycle (Scheme 122). The most frequently used catalysts are quinuclidine, DABCO, phosphines, thiopheno-lates, and selenophenolates. The reaction rate of a catalytic Baylis-Hillman reaction approaches a maximum at a certain temperature and declines upon further heating, as the equilibrium concentration of (587) becomes very small. In the first example, the electrophilic component of the reaction was immobilized on a solid phase and the nucleophile was in solution, while in the other example the situation was reversed (Scheme 122). [Pg.307]

Enolates, generated by Michael addition reactions of a,p-unsaturated esters or ketones, can add to aldehydes. If the Michael addition is carried out with a tertiary amine (or phosphine) then this is referred to as the Baylis-Hillman reaction. Typically, an amine such as l,4-diazabicyclo[2.2.2]octane (DABCO) is used. After the aldol reaction, the tertiary amine is eliminated and it can therefore be used as a catalyst (1.61). The reaction is somewhat slow (requiring several days), but rates may be enhanced with other amines such as quinuclidine or quinidine derivatives, the latter effecting asymmetric reaction with high levels of selectivity. ... [Pg.31]

Michael/Henry/dehydration/aromatisation reaction of 2-(2-oxoethyl) benzal-dehydes and nitroalkenes mediated by pyrrolidine to obtain polysubstituted naphthalene derivatives. DBU catalysed the conjugate additions of alcohols to ot,p-unsaturated nitriles, esters and ketones. Perhaps more important are the aza-Michael addition reactions of amines to a,p-unsaturated ketones, nitriles and esters. Recently, Costa, Vilarrasa and coworkers described the addition of lactams, imides, 2-pyridone, pyrimidine-2,4-diones and inosines to methyl propiolate and other similar compounds, DABCO and DMAP being the best catalysts. As mentioned before, tertiary amines give zwitterionic species with activated allynes. It was as early as 1932 when Diels and Alder used the reaction of pyridine with dimethyl acetylenedicarbojylate (DMAD) for the synthesis of heterocycles. The interception of the corresponding intermediate with Al-tosylimines and activated olefins provided access to l-azadienes ° and highly substituted butadienes (Scheme 2.6). When the quenching species of the zwitterionic intermediate is a 1,2-diketone, dibenzoyl maleates or cyclopentenedione derivatives could be obtained (Scheme 2.6). The interception of the zwitterionic species of N-methyl imidazole (NMI) and DMAD with ketenes to obtain unsaturated esters has also been shown. ... [Pg.16]

In the classical Morita-Baylis-Hillman (MBH) reaction an a,P-unsaturated ester (electrophilically activated alkene), is activated by the reversible Michael-addition of a tertiary amine catalyst (e.g. DABCO), producing a zwitterion intermediate, the enolate moiety of which can react with an aldehyde to form an aldolate zwitterion. Retro-Michael-addition then regenerates the catalyst and the MBH-product (Scheme 7.22). The catalyst is sometimes used in high amounts (over stoichiometric) and often the reaction is very sensitive to the Michael acceptor used. [Pg.237]

Despite of the fact that Baylis and Hillman reported the synthesis of a-hydr-oxyethylated nitroethylene through the reaction between nitroethylene and acetaldehyde in the presence of DABCO, nitroalkenes employed as activated olefins in MBH reaction have not received much attention until recently. Prompted by the fact that nitroalkenes have shown superior Michael acceptor abilities, and that the first step in the MBH reaction is the Michael-type addition of the catalyst to substrate, Namboothiri et al. have published a series of papers on nitroalkenes involved the MBH reaction. The MBH reactions between nitroalkenes and various electrophiles such as formaldehyde, activated carbonyl compounds, imines, alkenes and azodicarboxylates " in the presence... [Pg.25]


See other pages where DABCO catalysts Michael addition is mentioned: [Pg.330]    [Pg.1107]    [Pg.222]    [Pg.182]    [Pg.263]    [Pg.309]    [Pg.795]    [Pg.311]    [Pg.149]    [Pg.269]    [Pg.228]    [Pg.352]    [Pg.361]    [Pg.259]    [Pg.360]    [Pg.162]   
See also in sourсe #XX -- [ Pg.386 ]




SEARCH



Catalyst additives

DABCO

© 2024 chempedia.info