Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

D-glyceraldehyde-3-phosphate

This cleavage is a retro aldol reaction It is the reverse of the process by which d fruc tose 1 6 diphosphate would be formed by aldol addition of the enolate of dihydroxy acetone phosphate to d glyceraldehyde 3 phosphate The enzyme aldolase catalyzes both the aldol addition of the two components and m glycolysis the retro aldol cleavage of D fructose 1 6 diphosphate... [Pg.1058]

Further steps m glycolysis use the d glyceraldehyde 3 phosphate formed m the aldolase catalyzed cleavage reaction as a substrate Its coproduct dihydroxyacetone phosphate is not wasted however The enzyme triose phosphate isomerase converts dihydroxyacetone phosphate to d glyceraldehyde 3 phosphate which enters the glycol ysis pathway for further transformations... [Pg.1058]

TKsubstrate pNZYTffiS IN ORGANIC SYNTHESIS] (Vol 9) D-Glyceraldehyde-3-phosphate[591-57-l]aldolase-cataly zed additions... [Pg.446]

There are two distinct groups of aldolases. Type I aldolases, found in higher plants and animals, require no metal cofactor and catalyze aldol addition via Schiff base formation between the lysiae S-amino group of the enzyme and a carbonyl group of the substrate. Class II aldolases are found primarily ia microorganisms and utilize a divalent ziac to activate the electrophilic component of the reaction. The most studied aldolases are fmctose-1,6-diphosphate (FDP) enzymes from rabbit muscle, rabbit muscle adolase (RAMA), and a Zn " -containing aldolase from E. coli. In vivo these enzymes catalyze the reversible reaction of D-glyceraldehyde-3-phosphate [591-57-1] (G-3-P) and dihydroxyacetone phosphate [57-04-5] (DHAP). [Pg.346]

The TK-catalyzed reaction requires the presence of thiamine pyrophosphate and Mg " as cofactors. Although the substrate specificity of the enzyme has not been thoroughly investigated, it has been shown that the enzyme accepts a wide variety of 2-hydroxyaldehydes including D-glyceraldehyde 3-phosphate [591-57-1], D-glyceraldehyde [453-17-8], D-ribose 5-phosphate /47(9(9-2%/7, D-erythrose 4-phosphate and D-erythrose [583-50-6] (139,149—151). [Pg.346]

The chemical reaction catalyzed by triosephosphate isomerase (TIM) was the first application of the QM-MM method in CHARMM to the smdy of enzyme catalysis [26]. The study calculated an energy pathway for the reaction in the enzyme and decomposed the energetics into specific contributions from each of the residues of the enzyme. TIM catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (GAP) as part of the glycolytic pathway. Extensive experimental studies have been performed on TIM, and it has been proposed that Glu-165 acts as a base for deprotonation of DHAP and that His-95 acts as an acid to protonate the carbonyl oxygen of DHAP, forming an enediolate (see Fig. 3) [58]. [Pg.228]

Figure 3 A possible mechanism for the isomerization of dihydroxyacetone phosphate (DHAP) to D glyceraldehyde 3 phosphate (GAP) by the enzyme triosephosphate isomerase (TIM). The general acid (Glu 165) and general base (His 95) are shown. Figure 3 A possible mechanism for the isomerization of dihydroxyacetone phosphate (DHAP) to D glyceraldehyde 3 phosphate (GAP) by the enzyme triosephosphate isomerase (TIM). The general acid (Glu 165) and general base (His 95) are shown.
A non-linear regression analysis is employed using die Solver in Microsoft Excel spreadsheet to determine die values of and in die following examples. Example 1-5 (Chapter 1) involves the enzymatic reaction in the conversion of urea to ammonia and carbon dioxide and Example 11-1 deals with the interconversion of D-glyceraldehyde 3-Phosphate and dihydroxyacetone phosphate. The Solver (EXAMPLEll-l.xls and EXAMPLEll-3.xls) uses the Michaehs-Menten (MM) formula to compute v i- The residual sums of squares between Vg(,j, and v j is then calculated. Using guessed values of and the Solver uses a search optimization technique to determine MM parameters. The values of and in Example 11-1 are ... [Pg.849]

Figures 11-7 and 11-8 show plots of velocity versus substrate concentration of the interconversion of D-glyceraldehyde 3-Phosphate, and the conversion of urea, respectively. Figures 11-7 and 11-8 show plots of velocity versus substrate concentration of the interconversion of D-glyceraldehyde 3-Phosphate, and the conversion of urea, respectively.
Suggest a reasonable structure for the intermediate in the con- version of dihydroxyacetone phosphate to D-glyceraldehyde 3-phosphate. J... [Pg.1058]

Dihydroxyacetone phosphate is of course an intermediate in glycolysis. D-Gly-ceraldehyde can be phosphorylated by triose kinase in the presence of ATP to form D-glyceraldehyde-3-phosphate, another glycolytic intermediate. [Pg.634]

Mechanistically similar to the pyruvate lyases, 2-deoxy-D-ribose 5-phosphate aldolase (EC 4.1.2.4) catalyzes the addition of acetaldehyde to D-glyceraldehyde 3-phosphate. [Pg.594]

The D-fructose 1,6-bisphosphate aldolase (FruA EC 4.1.2.13) catalyzes in vivo the equilibrium addition of (25) to D-glyceraldehyde 3-phosphate (GA3P, (18)) to give D-fructose 1,6-bisphosphate (26) (Figure 10.14). The equilibrium constant for this reaction of 10 strongly favors synthesis [34]. The enzyme occurs ubiquitously and has been isolated from various prokaryotic and eukaryotic sources, both as class I and class II forms [30]. Typically, class I FruA enzymes are tetrameric, while the class II FruA are dimers. As a rule, the microbial class II aldolases are much more stable in solution (half-lives of several weeks to months) than their mammalian counterparts of class I (few days) [84-86]. [Pg.285]

D-glyceraldehyde-3-phosphate, pyruvate (G3P) l-deoxy-D-xylulose-5-phosphate (DXP) 2C-methyl-D-erythritol-4-phosphate (MEP) 4-diphosph-2C-methyl-D-erythritol (CDP-ME) 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phophate (CDP-MEP)... [Pg.358]

Clavulanic acid is synthesized by the condensation of L-arginine and D-glyceraldehyde-3-phosphate (G3P) as the first step [75,77] (Figure 12.2). A series of experiments revealed that the synthesis of clavulanic acid was limited by the availability of the C3 precursor, resulting from the species s limited ability to assimilate glucose [78]. Thus, the enhancement of clavulanic acid production requires alleviation of competition from other pathways for a C3 precursor [79]. [Pg.272]

There are two distinct pathways for biosynthesis of the IPP and DMAPP the mevalonate (MVA) pathway and the DXP pathway (Figure 12.3). The MVA pathway functions primarily in eukaryotes, while the DXP pathway is typically present in prokaryotes and the plastids of plants [90,91]. The first reaction in the DXP pathway is the condensation of pyruvate and D-glyceraldehyde-3-phosphate (G3P) to form DXP, which is catalyzed by DXP synthase encoded by the gene dxs [92]. In the second step, DXP is reduced to 2-C-methyl-D-erythritol-4-phosphate (MEP) by DXP reductoisomerase, which is encoded by the gene dxr (ispC) in E. coli. An array of other enzymes encoded by is pi), ispE, ispF, ispG, and ispH act in subsequent sequential reactions, leading to the conversion of MEP to IPP and DMAPP, which are interconverted by the enzyme encoded by idi [93-97],... [Pg.274]

Pihl, A., and Lange, R. (1962) The interaction of oxidized glutathione, cystamine mono-sulfoxide, and tetrathionate with the -SH groups of rabbit muscle D-glyceraldehyde 3-phosphate./. Biol. Chem. 237, 1356-1362. [Pg.1103]

Isolated photophores exposed to 2600, as KCN Maximal luminescence induced by KCN effect inhibited by d-glucose, d-glyceraldehyde 3-phosphate, and 3-phosphoglycerate 32... [Pg.934]

D-aldoses derived from, 4 698 D-Glyceraldehyde 3-phosphate, 4 711 Glycerides... [Pg.404]

Figure 6.3 Multienzymatic activity test for FSA. G3P D-glyceraldehyde-3-phosphate F6P fructose-6-phosphate PGI phosphoglucose Isomerase G6P glucose-6-phosphate GPD glu-cose-6-phosphate dehydrogenase. Figure 6.3 Multienzymatic activity test for FSA. G3P D-glyceraldehyde-3-phosphate F6P fructose-6-phosphate PGI phosphoglucose Isomerase G6P glucose-6-phosphate GPD glu-cose-6-phosphate dehydrogenase.
Phospho-2-keto-3-deoxygluconate aldolase, an enzyme in the Entner-Doudoroff pathway, that catalyzes the cleavage 6-phospho-2-keto-3-deoxy-D-gluconate to form pyruvate and D-glyceraldehyde 3-phosphate. [Pg.46]

Glyceraldehyde-3-phosphate dehydrogenase (NADP+) (nonphosphorylating) [EC 1.2.1.9], also referred to as triose-phosphate dehydrogenase, catalyzes the reaction of D-glyceraldehyde 3-phosphate with NADP+ and water to produce 3-phospho-D-glycerate and NADPH. [Pg.318]


See other pages where D-glyceraldehyde-3-phosphate is mentioned: [Pg.1058]    [Pg.446]    [Pg.850]    [Pg.1058]    [Pg.612]    [Pg.620]    [Pg.672]    [Pg.673]    [Pg.283]    [Pg.284]    [Pg.289]    [Pg.282]    [Pg.127]    [Pg.151]    [Pg.156]    [Pg.253]    [Pg.260]    [Pg.295]    [Pg.351]    [Pg.214]    [Pg.363]    [Pg.46]    [Pg.318]   
See also in sourсe #XX -- [ Pg.1058 ]




SEARCH



D Glyceraldehyde

D-Glyceraldehyde-3-phosphate:NAD

Glyceraldehyd

Glyceraldehyde 3-phosphate

© 2024 chempedia.info