Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cytosine in RNA

DNA in 1952). This interaction takes the form of very specific, mutually complementary hydrogen bonds between either adenine and thymine, or guanine and cytosine (in RNA, thymine is replaced by the very similar uracil). No other combinations exist and it is this ability of each nucleic acid to recognise its complementary partner that is the basis for the mode of operation of DNA. [Pg.125]

The major pyrimidines found in DNA are thymine and cytosine in RNA, they are uracil and cytosine. These three pyrimidines differ in the types and positions of chemical groups attached to the ring. [Pg.198]

A,G,CT, (U) Adenine, guanine, cytosine, thymine - the four bases present in DNA. Urac replaces thymine in RNA... [Pg.569]

The common naturally occurring pyrimidines are cytosine, uracil, and thymine (5-methyluracil) (Figure 11.3). Cytosine and thymine are the pyrimidines typically found in DNA, whereas cytosine and uracil are common in RNA. To view this generality another way, the uracil component of DNA occurs as the 5-methyl variety, thymine. Various pyrimidine derivatives, such as dihydrouracil, are present as minor constituents in certain RNA molecules. [Pg.329]

The sugar component in RNA is ribose, and the sugar in DNA is 2 -deoxy-ribose. (The prefix 2 -deoxv indicates that oxygen is missing from the 2 position of ribose.) DNA contains four different amine bases, two substituted purines (adenine and guanine) and two substituted pyrimidines (cytosine and thymine). Adenine, guanine, and cytosine also occur in RNA, but thymine is replaced in RNA by a closely related pyrimidine base called uracil. [Pg.1101]

Attached by a covalent bond to carbon atom 1 of the deoxyribose ring is an amine (and therefore a base), which may be adenine, A (22) guanine, G (23) cytosine, C (24) or thymine, T (25). In RNA, uracil, U (26), replaces thymine. The base bonds to carbon atom 1 of deoxyribose through the nitrogen of the —NH— group (printed in red) and the compound so formed is called a nucleoside. All nucleosides have a similar structure, which we can summarize as the shape shown in (27) the lens-shaped object represents the attached amine. [Pg.895]

RNA uses uracil instead of thymine. The component bases in RNA are adenine, uracil, guanine, and cytosine. [Pg.942]

Four different nitrogenous bases may occur in each nucleotide adenine (A), cytosine (C), guanine (G), and thymine (T) in DNA, uracyl (U), substitutes for the thymine in RNA. [Pg.369]

Nucleotide A subunit of DNA or RNA consisting of a purine (adenine and guanine) or a pyrimidine base [thymine (DNA only), uracil (RNA only) and cytosine], a phosphate molecule, and a sugar molecule (deoxyribose in DNA and ribose in RNA). [Pg.536]

Nucleic acids can contain of any one of three kinds of pyrimidine ring systems (uracil, cytosine, or thymine) or two types of purine derivatives (adenine or guanine). Adenine, guanine, thymine, and cytosine are the four main base constituents found in DNA. In RNA molecules, three of these four bases are present, but with thymine replaced by uracil to make up the fourth. Some additional minor derivatives are found in messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), particularly the N4,N4-dimethyladenine and N7-methylguanine varieties. [Pg.51]

Figure 1.42 The three pyrimidine bases common to nucleic acid construction. Cytosine and thymine are found in DNA, while in RNA, uracil residues replace thymine. The associated sugar groups are bound in N-glycosidic linkages to the N-l nitrogen. Figure 1.42 The three pyrimidine bases common to nucleic acid construction. Cytosine and thymine are found in DNA, while in RNA, uracil residues replace thymine. The associated sugar groups are bound in N-glycosidic linkages to the N-l nitrogen.
In molecular biology, a set of two hydrogen-bonded nucleotides on opposite complementary nucleic acid strands is called a base pair. In the classical Watson-Crick base pairing in DNA, adenine (A) always forms a base pair with thymine (T) and guanine (G) always forms a base pair with cytosine (C). In RNA, thymine is replaced by uracil (U). [Pg.103]

There are five common bases found in nucleic acids. Adenine (A), guanine (G) and cytosine (C) are found in both DNA and RNA. Uracil (U) is found only in RNA and thymine (T) only in DNA. The structures of these bases are shown in Figure 13.2. Adenine and guanine are purine bases while uracil, thymine and cytosine are the pyrimidine bases. [Pg.444]

Pyrimidines have only one ring. Cytosine (C) is present in both DNA and RNA. Thymine (T) is usually found only in DNA, whereas uracil (U) is found only in RNA. [Pg.5]

The nitrogen-containing bases that occur in DNA and RNA fall into two structural categories the purines and the pyrimidines. The former contain a five-membered ring fused to a six-membered ring, while the latter contain a six-membered ring only. The two purines are common to both DNA and RNA adenine (A) and guanine (G). The pyrimidine cytosine (C) occurs in both DNA and RNA. The other pyrimidine is thymine (T) in DNA but uracil (U) in RNA. [Pg.151]

In RNA, there are four bases adenine, guanine, cytosine, and uracil. The sugar is ribose. [Pg.165]

The bases are either monocyclic pyrimidines or bicyclic purines (see Section 14.1). Three pyrimidine bases are encountered in DNA and RNA, cytosine (C), thymine (T) and uracil (U). Cytosine is common to both DNA and RNA, but uracil is found only in RNA and thymine is found only in DNA. In the nucleic acid, the bases are linked through an A-glycoside bond to a sugar, either ribose or deoxyribose the combination base plus sugar is termed a nucleoside. The nitrogen bonded to the sugar is that shown. [Pg.431]

The bases that occur in nucleic acids are aromatic heterocyclic compounds derived from either pyrimidine or purine. Five of these bases are the main components of nucleic acids in all living creatures. The purine bases adenine (abbreviation Ade, not A ) and guanine (Gua) and the pyrimidine base cytosine (Cyt) are present in both RNA and DNA. In contrast, uracil (Ura) is only found in RNA. In DNA, uracil is replaced by thymine (Thy), the 5-methyl derivative of uracil. 5-methylcyto-sine also occurs in small amounts in the DNA of the higher animals. A large number of other modified bases occur in tRNA (see p. 82) and in other types of RNA. [Pg.80]

Ribonucleic acids (RNAs) are polymers consisting of nucleoside phosphate components that are linked by phosphoric acid diester bonds (see p.80). The bases the contain are mainly uracil, cytosine, adenine, and guanine, but many unusual and modified bases are also found in RNAs (B). [Pg.82]

The most important pyrimidine derivatives are those upon which biological organisms depend. Cytosine 1018 and uracil 1019 are found in ribonucleic acid (RNA) in the form of their ribonucleotides, cytidine 1020 and uridine 1021, while in deoxyribonucleic acid (DNA), cytosine and thymine 1022 are found in the form of their 2 -deoxyribonucleotides, 2 -deoxycytidine 1023 and thymidine 1024. 5-Methylcytosine 1025 is also found to a small extent (c. 5%) in human DNA in the form of its 2 -deoxyriboside 1026, and 5-(hydroxymethyl)cytosine-2 -deoxyriboside 1027 has also been detected in smaller amounts <2005CBI1>. Many variants of cytosine and uracil can be found in RNA including orotic acid 1028 in the form of its ribonucleotide orotidine 1029. Other pyrimidine derivatives to have been isolated from various biological sources include 2 -deoxyuridine 1030, alloxan 1031, and toxopyrimidine (pyramine) 1032 (Figure 2). [Pg.235]

An attempt has been made to apply the Cohen and Reiss theory to dimer and hydrate formation in RNA.158 The results were inconclusive, probably because of a poor choice of example. Application of the theory to RNA was complicated by the necessity of estimating the distribution of uracil residues on the chain. The results are made still more tentative by the fact that Tanaka ignored the probability of dimer formation between cytosine residues, mixed dimers between cytosine and uracil, and hydrate formation in cytosine as well as the resultant deamination phenomena. A better choice of example would have been poly-uridylic acid. [Pg.243]

In DNA the sugar molecule in the nucleotide is 2-deoxyribose, and in RNA it is ribose. The amine bases in DNA are adenine, thymine, cytosine, and guanine, symbolized by A, T, C, and G, respectively. RNA contains adenine, cytosine, and guanine, but thymine is replaced by the based uracil (Figure 16.16). The primary structure of nucleic acids is given by the sequence of the amine side chains starting from the phosphate end of the nucleotide. For example, a DNA sequence may be -T-A-A-G-C-T. [Pg.233]

In nucleotide structure, the central component is the 5-carbon furanoside monosaccharide, either D-ribose (in RNA) or 2-deoxy-D-ribose (in DNA). The four heterocyclic bases found in DNA-based nucleotides are adenine, guanine, cytosine, and thymine ... [Pg.469]

As with proteins, the nucleic acid polymers can denature, and they have secondary structure. In DNA, two nucleic acid polymer chains are twisted together with their bases facing inward to form a double helix. In doing so, the bases shield their hydrophobic components from the solvent, and they form hydrogen bonds in one of only two specific patterns, called base pairs. Adenine hydrogen bonds only with thymine (or uracil in RNA), and guanine pairs only with cytosine. Essentially every base is part of a base pair in DNA, but only some of the bases in RNA are paired. The double-helix structure... [Pg.118]

Many biologically important heterocyclic compounds have fused (condensed) ring systems. In particular, the purines adenine and guanine are found in DNA (with cytosine, 5-methylcytosine, and thymine) and also in RNA (with cytosine and uracil). [Pg.468]

Nucleic acids are polymeric nucleotides in which phosphate esters link ribose or deoxyribose molecules through the C OH of one and the C OH of the other. In rna, the aglycone nitrogen bases are cytosine, adenine, guanine, and uracil. In dna, thymine replaces uracil. The rna polymer is like that of dna, except that a CH, replaces the OH group on C of the ribose ring. [Pg.512]

DNA, a constituent of the cell nucleus, consists of two strands of polynucleotides that are coiled to form a double helix. The strands are held together by H-bonding between the nitrogen bases. The pyrimidines always form H-bonds with a specific purine i.e., cytosine with guanine and thymine with adenine. However, in RNA the pairing is between uracil and adenine. [Pg.512]


See other pages where Cytosine in RNA is mentioned: [Pg.8]    [Pg.432]    [Pg.304]    [Pg.1136]    [Pg.1136]    [Pg.980]    [Pg.8]    [Pg.432]    [Pg.304]    [Pg.1136]    [Pg.1136]    [Pg.980]    [Pg.933]    [Pg.486]    [Pg.137]    [Pg.240]    [Pg.654]    [Pg.55]    [Pg.125]    [Pg.454]    [Pg.625]    [Pg.461]    [Pg.441]    [Pg.470]    [Pg.117]    [Pg.40]   
See also in sourсe #XX -- [ Pg.1165 ]




SEARCH



10- cytosin

Cytosine

In cytosine

© 2024 chempedia.info