Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropanes Diazocarbonyl Compounds

Much of the early work into the rhodium(II)-catalysed formation of oxazoles from diazocarbonyl compounds was pioneered by the group of Helquist. They first reported, in 1986, the rhodium(II) acetate catalysed reaction of dimethyl diazomalonate with nitriles.<86TL5559, 93T5445, 960S(74)229> A range of nitriles was screened, including aromatic, alkyl and vinyl derivatives with unsaturated nitriles, cyclopropanation was found to be a competing reaction (Table 3). [Pg.10]

The catalytic cyclopropanation of 1,3-dienes leads exclusively or nearly so to mono-cyclopropanation products, as long as no excess of diazocarbonyl compound is applied. The regioselectivity has been tested for representative rhodium, copper and palladium catalysts 59 7 ,72), and the results are displayed in Table 9. [Pg.98]

Diazocarbonyl compounds readily undergo [3 + 2] cycloaddition to electron-poor alkenes 139). The 1-pyrazolines thus formed usually tautomerize to 2-pyrazolines if there is a hydrogen in an a-position to one of the nitrogen atoms otherwise, thermally induced ring contraction with evolution of nitrogen to give cyclopropanes can occur (Scheme 18). [Pg.125]

Based on a detailed investigation, it was concluded that the exceptional ability of the molybdenum compounds to promote cyclopropanation of electron-poor alkenes is not caused by intermediate nucleophilic metal carbenes, as one might assume at first glance. Rather, they seem to interfere with the reaction sequence of the uncatalyzed formation of 2-pyrazolines (Scheme 18) by preventing the 1-pyrazoline - 2-pyrazoline tautomerization from occurring. Thereby, the 1-pyrazoline has the opportunity to decompose purely thermally to cyclopropanes and formal vinylic C—H insertion products. This assumption is supported by the following facts a) Neither Mo(CO)6 nor Mo2(OAc)4 influence the rate of [3 + 2] cycloaddition of the diazocarbonyl compound to the alkene. b) Decomposition of ethyl diazoacetate is only weakly accelerated by the molybdenum compounds, c) The latter do not affect the decomposition rate of and product distribution from independently synthesized, representative 1-pyrazolines, and 2-pyrazolines are not at all decomposed in their presence at the given reaction temperature. [Pg.128]

Synthesis of a-alkoxyketones from a-diazocarbonyl compounds and alcohols under the influence of copper or rhodium catalysts is well established as an alternative to the Lewis or proton acid catalyzed variant of this synthetic transformation. The sole recent contribution to the aspect of general reactivity deals with the competition between O/H insertion and cyclopropanation of unsaturated alcohols 162). The results... [Pg.206]

Ylide formation, and hence X-H bond insertion, generally proceeds faster than C-H bond insertion or cyclopropanation [1176], 1,2-C-H insertion can, however, compete efficiently with X-H bond insertion [1177]. One problem occasionally encountered in transition metal-catalyzed X-H bond insertion is the deactivation of the (electrophilic) catalyst L M by the substrate RXH. The formation of the intermediate carbene complex requires nucleophilic addition of a carbene precursor (e.g. a diazocarbonyl compound) to the complex Lj,M. Other nucleophiles present in the reaction mixture can compete efficiently with the carbene precursor, or even lead to stable, catalytically inactive adducts L M-XR. For this reason carbene X-H bond insertion with substrates which might form a stable complex with the catalyst (e.g. amines, imidazole derivatives, thiols) often require larger amounts of catalyst and high reaction temperatures. [Pg.194]

Table 4.23. Intramolecular cyclopropanation by transition metal-catalyzed decomposition of diazocarbonyl compounds. Table 4.23. Intramolecular cyclopropanation by transition metal-catalyzed decomposition of diazocarbonyl compounds.
The (ri" -diene tricarbonyliron)-substituted diazocarbonyl compounds 25 have been found to undergo 1,3-dipolar cycloaddition with methyl acrylate in high yield, but with little or no diastereoselectivity (56). Nevertheless, the facile chromatographic separation of the diastereomeric products 26a,b and 27a,b (Scheme 8.8), permits the synthesis of pure enantiomers when optically active diazo compounds (25) [enantiomeric excess (ee) >96%] are employed. When the reaction of 25 (R = C02Et) with methyl acrylate was carried out at 70 °C, cyclopropanes instead of A -pyrazolines were formed. The enantiomerically pure... [Pg.547]

With respect to the large number of unsaturated diazo and diazocarbonyl compounds that have recently been used for intramolecular transition metal catalyzed cyclopropanation reactions (6-8), it is remarkable that 1,3-dipolar cycloadditions with retention of the azo moiety have only been occasionally observed. This finding is probably due to the fact that these [3+2]-cycloaddition reactions require thermal activation while the catalytic reactions are carried out at ambient temperature. A7-AUyl carboxamides appear to be rather amenable to intramolecular cycloaddition. Compounds 254—256 (Scheme 8.61) cyclize intra-molecularly even at room temperature. The faster reaction of 254c (310) and diethoxyphosphoryl-substituted diazoamides 255 (311) as compared with diazoacetamides 254a (312) (xy2 25 h at 22 °C) and 254b (310), points to a LUMO (dipole) — HOMO(dipolarophile) controlled process. The A -pyrazolines expected... [Pg.593]

By 1960, there was recognition that copper salts could cause the loss of dinitrogen from diazocarbonyl compounds with addition of the resulting carbene intermediate to a carbon-carbon double bond to form a cyclopropane product. That this reaction, first reported by G. Stork in 1961 (Eq. 6), could occur in an intramolecular fashion and thus avoid the formation of isomers, ushered in the first significant synthetic... [Pg.565]

Intramolecular cyclopropanations of a-diazocarbonyl compounds have been widely utilized as a means of constructing complex polycyclic compounds stereoselectively in short steps (e.g. equation 98)187"198. The choice of the ligand of the Rh(II) catalyst, Rh2L4,... [Pg.291]

Asymmetric cyclopropanations of alkenes and alkynes with a-diazocarbonyl compounds have been extensively explored in recent years and a number of very effective chiral catalysts have been developed2. Copper complexes modified with such chiral ligands as salicy-laldimines 38202,203, semicorrins 39204 208, bis(oxazolines) 40209-2" and bipyridines 41212 have... [Pg.292]

Palladium(II) compounds have unique characteristics suitable for efficient catalysed cyclopropanation of electron-deficient alkenes using diazoalkanes. Neither copper nor rhodium(II) catalysts have shown comparable reactivity with diazoalkanes, although these catalysts are superior to palladium(II) catalysts for cyclopropanation with diazocarbonyl compounds. A few examples of palladium(II) catalysed cyclopropanation of a,fl-unsaturated carbonyl compounds with diazoalkanes are shown in equations 20-242 °. [Pg.661]

Metal catalysed decomposition of diazocarbonyl compounds in the presence of alkenes provides a facile and powerful means of constructing electrophilic cyclopropanes. The cyclopropanation process can proceed intermolecularly or intramolecularly. Early work on the topic of intramolecular cyclopropanation (mainly using diazoketones as precursors) has been surveyed31. With the discovery of powerful group VIII metal catalysts, in particular the rhodium(II) derivatives, metal catalysed cyclopropanation of diazocarbonyls is currently the most fertile area in cyclopropyl chemistry. In this section, we will review the efficiency and versatility of the various catalysts employed in the cyclopropanation of diazocarbonyls. Cyclopropanations have been organized according to the types of diazocarbonyl precursors. Emphasis is placed on recent examples. [Pg.662]

Rhodium acetate catalyzed cyclopropanation of methylenecycloalkanes with diazocarbonyl compounds (equation 9) provides a direct method for preparation of functionalized SPC27. [Pg.866]

The range of alkenes that may be used as substrates in these reactions is vast Suitable catalysts may be chosen to permit use of ordinary alkenes, electron deficient alkenes such as a,(3-unsaturated carbonyl compounds, and very electron rich alkenes such as enol ethers. These reactions are generally stereospecific, and they often exhibit syn stereoselectivity, as was also mentioned for the photochemical reactions earlier. Several optically active catalysts and several types of chiral auxiliaries contained in either the al-kene substrates or the diazo compounds have been studied in asymmetric cyclopropanation reactions, but diazocarbonyl compounds, rather than simple diazoalkanes, have been used in most of these studies. When more than one possible site of cyclopropanation exists, reactions of less highly substituted alkenes are often seen, whereas the photochemical reactions often occur predominantly at more highly substituted double bonds. However, the regioselectivity of the metal-catalyzed reactions can be very dependent upon the particular catalyst chosen for the reaction. [Pg.961]

Diazocarbonyl compounds, especially diazo ketones and diazo esters [19], are the most suitable substrates for metal carbene transformations catalyzed by Cu or Rh compounds. Diazoalkanes are less useful owing to more pronounced carbene dimer formation that competes with, for example, cyclopropanation [7]. This competing reaction occurs by electrophilic addition of the metal-stabilized carbocation to the diazo compound followed by dinitrogen loss and formation of the alkene product that occurs with regeneration of the catalytically active metal complex (Eq. 5.5) [201. [Pg.194]

Rhodium- and copper-catalysed cyclopropanation of 8-oxabicyclo[3.2.1]octane by diazocarbonyl compounds was achieved in poor to moderate yields. Ring opening of the cyclopropane (40) upon treatment with Sml2 offered a desymmetrization of the original bicycle. [Pg.138]

Any pair of the three bonds in the cyclopropane ring such as 35a could now be disconnected but none is very favourable. We should much rather use a diazocarbonyl compound such as 42 to make the carbene. That will mean chain extension after cyclopropane formation. [Pg.282]

The most frequently used metallic catalysts for acyldiazo- and (alkoxycarbonyl)dia-zomethanes are complexes or salts of rhodium, palladium and copper. Alkenylboronic esters A-silylated allylamines and acetylenes are successfully cyclopropanat-ed with diazocarbonyl compounds under catalysis of one of those metal derivatives. Newly developed metallic catalysts for diazoacetic esters include polymer-bound, quantitatively recoverable Rh(II) carboxylate salts ", Cu(II) supported on NATION ion exchange poly-mer ruthenacarborane clusters, Rh2(NHCOCH3)4 which produces cyclopropanes with substantially enhanced trans (anti) selectivity as shown below and (rj -CsHs)... [Pg.290]

Although reaction of a,/3-unsaturated carbonyl compounds with diazo compounds generally gives cyclopropyl compounds in low yields, in the presence of SbFs, the cyclopropanation of a,)8-unsaturated carbonyl compounds with diazocarbonyl compounds proceeds very well to produce the desired products in good yields (Eq. 22) [41]. [Pg.529]

The intramolecular cyclopropanations of a-diazocarbonyl compounds have been extensively studied and recently reviewed . The reaction is satisfactorily accomplished when the diazo carbon atom is proximal to the double bond in the substrate. Thus, the construction of bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane skeletons has been achieved by this method, whereas the synthesis of bicyclo[5.1.0]octane or the larger bicyclic systems has usually been difficult (equation 73). Bicyclo[2.1.0]pentan-2-ones expected in the reaction of j8,y-unsaturated diazoketones are generally labile and readily undergo the ring cleavage to give jS,y-unsaturated ketenes. ... [Pg.333]


See other pages where Cyclopropanes Diazocarbonyl Compounds is mentioned: [Pg.210]    [Pg.77]    [Pg.87]    [Pg.88]    [Pg.152]    [Pg.241]    [Pg.25]    [Pg.218]    [Pg.290]    [Pg.662]    [Pg.686]    [Pg.952]    [Pg.510]    [Pg.510]    [Pg.340]    [Pg.18]    [Pg.662]    [Pg.686]    [Pg.510]   
See also in sourсe #XX -- [ Pg.539 ]




SEARCH



Cyclopropanes compounds

Diazocarbonyl

Diazocarbonyls

© 2024 chempedia.info