Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers cyclopropanation

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Tab. 3.4 Cyclopropanation of the chiral enol ether 89 under Simmons-Smith conditions... Tab. 3.4 Cyclopropanation of the chiral enol ether 89 under Simmons-Smith conditions...
Tab. 3.5 Cyclopropanation of the chiral enol ethers 92-95 under Furukawa conditions... Tab. 3.5 Cyclopropanation of the chiral enol ethers 92-95 under Furukawa conditions...
The Simmons-Smith cyclopropanation method has also found application for the a-methylation of ketones via an intermediate cyclopropane. The starting ketone—e.g. cyclohexanone 9—is first converted into an enol ether 10. Cyclopropanation of 10 leads to an alkoxynorcarane 11, which on regioselective hydrolytic cleavage of the three-membered ring leads to the semiketal 12 as intermediate, and finally yields the a-methylated ketone 13 ... [Pg.260]

For cyclopropanation of enol ethers with in situ-generated acyloxycarbene complexes of chromium and in the absence of CO, see reference [10a]... [Pg.116]

The Simmons-Smith reaction has been used as the basis of a method for the indirect a methylation of a ketone. The ketone (illustrated for cyclohexanone) is first converted to an enol ether, an enamine (16-12) or silyl enol ether (12-22) and cyclopropanation via the Simmons-Smith reaction is followed by hydrolysis to give a methylated ketone. A related procedure using diethylzinc and diiodomethane allows ketones to be chain extended by one carbon. In another variation, phenols can be ortho methylated in one laboratory step, by treatment with Et2Zn and... [Pg.1089]

This procedure illustrates a new three-step reaction sequence for the one-carbon ring expansion of cyclic ketones to the homologous tt,/3-unsaturated ketones. The key step in the sequence is the iron(III) chloride-induced cleavage of the central bond of trimethyl-silyloxycyclopropanes which me obtained by cyclopropanation of trimethylsilyl enol ethers. The procedure for the preparation of 1-trimethylsilyloxycyclohexene from cyclohexanone described in Part A is that of House, Czuba, Gall, and Olmstead. ... [Pg.60]

The cyclopropanation of 1-trimethylsilyloxycyclohexene in the present procedure is accomplished by reaction with diiodomethane and diethylzinc in ethyl ether." This modification of the usual Simmons-Smith reaction in which diiodomethane and activated zinc are used has the advantage of being homogeneous and is often more effective for the cyclopropanation of olefins such as enol ethers which polymerize readily. However, in the case of trimethylsilyl enol ethers, the heterogeneous procedures with either zinc-copper couple or zinc-silver couple are also successful. Attempts by the checkers to carry out Part B in benzene or toluene at reflux instead of ethyl ether afforded the trimethylsilyl ether of 2-methylenecyclohexanol, evidently owing to zinc iodide-catalyzed isomerization of the initially formed cyclopropyl ether. The preparation of l-trimethylsilyloxybicyclo[4.1.0]heptane by cyclopropanation with diethylzinc and chloroiodomethane in the presence of oxygen has been reported. "... [Pg.60]

Longifolene has also been synthesized from ( ) Wieland-Miescher ketone by a series of reactions that feature an intramolecular enolate alkylation and ring expansion, as shown in Scheme 13.26. The starting material was converted to a dibromo ketone via the Mr-silyl enol ether in the first sequence of reactions. This intermediate underwent an intramolecular enolate alkylation to form the C(7)—C(10) bond. The ring expansion was then done by conversion of the ketone to a silyl enol ether, cyclopropanation, and treatment of the siloxycyclopropane with FeCl3. [Pg.1190]

For cyclopropanations with ethyl diazoacetate, a rather weak influence of the olefin structure has been noted 59 60, (Table 7). The preference for the sterically less crowded cyclopropane is more marked for 1,2-disubstituted than for 1,1-disubstituted olefins. The influence of steric factors becomes obvious from the fact that the ratio Z-36/E-36, obtained upon cyclopropanation of silyl enol ethers 35, parallels Knorr s 90> empirical substituent parameter A.d of the group R 60). These ZjE ratios, however, do not represent the thermodynamic equilibrium of both diastereomers. [Pg.105]

Diverging results have been reported for the carbenoid reaction between alkyl diazoacetates and silyl enol ethers 49a-c. Whereas Reissig and coworkers 60) observed successful cyclopropanation with methyl diazoacetate/Cu(acac)2, Le Goaller and Pierre, in a note without experimental details u8), reported the isolation of 4-oxo-carboxylic esters for the copper-catalyzed decomposition of ethyl diazoacetate. According to this communication, both cyclopropane and ring-opened y-keto ester are obtained from 49 c but the cyclopropane suffers ring-opening under the reaction conditions. [Pg.112]

Whereas metal-catalyzed decomposition of simple diazoketones in the presence of ketene acetals yields dihydrofurans 121,124,134), cyclopropanes usually result from reaction with enol ethers, enol acetates and silyl enol ethers, just as with unactivated alkenes 13). l-Acyl-2-alkoxycyclopropanes were thus obtained by copper-catalyzed reactions between diazoacetone and enol ethers 79 105,135), enol acetates 79,135 and... [Pg.121]

Considering the above-mentioned facts, according to which simple diazoketones yield dihydrofurans with ketene acetals but cyclopropanes with enol ethers, one exports an interlink between these clear-cut alternatives to exist, i.e. substrates from which both cyclopropanes and dihydrofurans result. In fact, providing an enol ether with a cation-stabilizing substituent in the a-position creates such a situation The Rh2(OAc)4-catalyzed decomposition of -diazoacetophenone in the presence of ethyl vinyl ether produces mainly cyclopropane 82 (R=H), but a small amount of dihydro-... [Pg.122]

The comparison between the cycloaddition behavior of simple diazoketones and of ethyl diazopyruvate 56 towards the same olefin underlines the crucial influence of the ethoxycarbonyl group attached to the carbonyl function. This becomes once again evident when COOEt is replaced by an acetal function, such as in l-diazo-3,3-di-methoxy-2-butanone 86 with enol ethers and acetates, cyclopropanes rather than dihydrofurans are now obtained 113). ... [Pg.123]

With a less reactive olefin such as isopropenyl acetate, diazoketone 86 gives only a low yield of cyclopropane 90 a-acyl enol ether 92, resulting from an intramolecular rearrangement of the ketocarbenoid, becomes the favored reaction product. If 91... [Pg.123]

Strong evidence exists for the intermediacy of a tungsten ethoxycarbonyl carbene 425 in cyclopropanation of various enol ethers, 1,3-dienes and cyclohexene with ethyl diazoacetate in the presence of catalytic amounts of (CO)5W = C(OMe)Ph 413). The following equations could account for the obtained products ... [Pg.242]

This reaction is extended to the intramolecular ring closure of the intermediate radical 224 with olefinic or trimethylsilylacetylenic side chains [121]. Cu(BF4)2 is also effective as an oxidant (Scheme 89) [122]. Conjugate addition of Grignard reagents to 2-eyclopenten-l-one followed by cyclopropanation of the resulting silyl enol ethers gives the substituted cyclopropyl silyl ethers, which are oxidized to 4-substituted-2-cyclohexen-l-ones according to the above-mentioned method [123]. (Scheme 88 and 89)... [Pg.144]

The ring-opening of the cyclopropane nitrosourea 233 with silver trifiate followed by stereospecific [4 + 2] cycloaddition yields 234 [129]. (Scheme 93) Oxovanadium(V) compounds, VO(OR)X2, are revealed to be Lewis acids with one-electron oxidation capability. These properties permit versatile oxidative transformations of carbonyl and organosilicon compounds as exemplified by ring-opening oxygenation of cyclic ketones [130], dehydrogenative aroma-tization of 2-eyclohexen-l-ones [131], allylic oxidation of oc,/ -unsaturated carbonyl compounds [132], decarboxylative oxidation of a-amino acids [133], oxidative desilylation of silyl enol ethers [134], allylic silanes, and benzylic silanes [135]. [Pg.146]

Cyclopropanation of l,3-dienes. a,0-Unsaturated carbenes can undergo [4 + 2]cycloaddition with 1,3-dienes (12, 134), but they can also transfer the carbene ligand to an isolated double bond to form cyclopropanes. Exclusive cyclopropanation of a 1,3-diene is observed in the reaction of the a,(3-unsaturated chromium carbene 1 with the diene 2, which results in a frans-divinylcyclopropane (3) and a seven-membered silyl enol ether (4), which can be formed from 3 by a Cope rearrangement. However, the tungsten carbene corresponding to 1 undergoes exclusive [4 + 2]cycIoaddition with the diene 2. [Pg.91]

Reipig (39,40), Pfaltz (41), and Andersson and their co-workers (42) independently showed that these catalysts are capable of effecting the selective cyclopropanation of enol ethers and enolsilanes. Methyl vinyl ketone and acetophenone enolsilanes provide high selectivities in the cyclopropane products, but both isomers are formed equally. The trisubstituted dihydropyran 65 leads to cyclopropane adducts in high diastereoselectivities and enantioselectivities using 55c CuOTf as catalyst. [Pg.24]

Vinyl acetate fails to react with dihalocarbenes, but reacts with the trihalo-methyl anion precursor to produce the l,l,l-trihalo-2-acetoxypropane [33, 166-168], In contrast, where the a-position is substituted by an alkyl group, normal cyclopropanation occurs. Cyclic enol acetates behave in a similar fashion to the enol ethers [12, 88], e.g. bicyclo[3,2,l]oct-2-enyl acetate and its 3-isomer... [Pg.327]

In cyclopropanations with electrophilic carbene complexes, yields of cyclopropanes tend to improve with increasing electron density of the alkene. As illustrated by the examples in Table 3.5, cyclopropanations of enol ethers with aryldiazomethanes often proceed in high yields. Simple alkyl-substituted olefins are, however, more difficult to cyclopropanate with diazoalkanes. A few examples of the cyclopropanation of enamines with diazoalkanes have been reported [650]. [Pg.115]

A wide range of olefins can be cyclopropanated with acceptor-substituted carbene complexes. These include acyclic or cyclic alkenes, styrenes [1015], 1,3-dienes [1002], vinyl iodides [1347,1348], arenes [1349], fullerenes [1350], heteroare-nes, enol ethers or esters [1351-1354], ketene acetals, and A-alkoxycarbonyl-[1355,1356] or A-silyl enamines [1357], Electron-rich alkenes are usually cyclopropanated faster than electron-poor alkenes [626,1015],... [Pg.218]

For this reason unstable cyclopropanes or only rearrangement products are obtained when donor-substituted alkenes react with acceptor-substituted carbene complexes [1409-1416]. In reactions of acyl- and vinylcarbene complexes with enol ethers the most common types of rearrangement observed are those shown in Figure 4.23. [Pg.226]

The reaction of vinylcarbenoids with vinyl ethers can lead to other types of [3 + 2] cycloadditions. The symmetric synthesis of 2,3-dihydrofurans is readily achieved by reaction of rhodium-stabilized vinylcarbenoids with vinyl ethers (Scheme 14.17) [107]. In this case, (J )-pantolactone is used as a chiral auxihary. The initial cyclopropanation proceeds with high asymmetric induction upon deprotection of the silyl enol ether 146, ring expansion occurs to furnish the dihydrofuran 147, with no significant epi-merization during the ring-expansion process. [Pg.325]

The reaction of Cjq with silylated nucleophiles [47] requires compounds such as silyl ketene acetals, silylketene thioacetals or silyl enol ethers. It proceeds smoothly and in good yields in the presence of fluoride ions (KF/18-crown-6) (Scheme 3.10). The advantage of the latter synthesis is the realization of the cyclopropanation under nearly neutral conditions, which complements the basic conditions that are mandatory for Bingel reactions. Reaction with similar silyl ketene acetals under photochemical conditions and without the use of F does not lead to methanofullerenes but to dihydrofullerene acetate [48]. [Pg.83]


See other pages where Enol ethers cyclopropanation is mentioned: [Pg.111]    [Pg.115]    [Pg.154]    [Pg.26]    [Pg.122]    [Pg.88]    [Pg.111]    [Pg.113]    [Pg.114]    [Pg.117]    [Pg.120]    [Pg.121]    [Pg.122]    [Pg.129]    [Pg.152]    [Pg.208]    [Pg.109]    [Pg.192]    [Pg.106]   
See also in sourсe #XX -- [ Pg.541 , Pg.543 ]




SEARCH



Cyclopropanation silyl enol ethers

Cyclopropanations of enol ethers

Cyclopropanes ether

Enol cyclopropanation

Enol ethers, cyclopropanation using zinc

From Simmons-Smith Cyclopropanation of a-Enone Enol Ethers

© 2024 chempedia.info