Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloalkenes structures

Although the ( )-cycloalkene structures have been found in a large variety of natural products especially in macrolides 36a-c), only a brief comment on the conformational aspects of some sesquiterpenes 37 will conclude this section. [Pg.7]

The cycloalkene structure also influenced the rate of fluorine addition, while a remarkable difference was observed between 1-phenylcyclohexene and 4-phenyl-1,2 dihydronaphthalene66 (Scheme 17). [Pg.834]

SCHEME 17. The effect of cycloalkene structure on relative rates of fluorination... [Pg.834]

So far we have represented cycloalkenes by structural formulas m which the double bonds are of the cis configuration If the ring is large enough however a trans... [Pg.200]

Cycloalkene (Section 5 1) A cyclic hydrocarbon characterized by a double bond between two of the nng carbons Cycloalkyne (Section 9 4) A cyclic hydrocarbon characterized by a tnple bond between two of the nng carbons Cyclohexadienyl anion (Section 23 6) The key intermediate in nucleophilic aromatic substitution by the addition-elimination mechanism It is represented by the general structure shown where Y is the nucleophile and X is the leaving group... [Pg.1280]

The structure of the dimer can be derived simply by evaluation of the cross signals in the HH COSY plot. The cycloalkene protons form two AB systems with such small shift differences that the cross signals lie within the contours of the diagonal signals. [Pg.208]

The racemization of medium-ring trans-cycloalkenes depends upon ring size and substitution, as indicated by the data below. Discuss these relative reactivities in terms of the structures of the cycloalkenes and the mechanism of racemization. [Pg.116]

Alicyclic Hydrocarbons. These refer to cyclic analogues of aliphatic hydrocarbons and are named accordingly, using the piefix cyclo-." Their properties are similar to their open-chain aliphatic counterparts. Alicyclic hydrocarbons are subdivided into monocyclic (cycloalkanes, cycloalkenes, cycloalkynes, cycloalkadienes, etc.) and polycyclic aliphatic compounds. Monocyclic aliphatic structures having more than 30 carbon atoms in the ring are known, but those containing 5 or 6 carbon atoms are more commonly found in nature [47, p. 28]. [Pg.308]

They are chemically as reactive as their straight-chain counterparts. Cycloalkenes can lose their double bond in addition reactions. In scission or cleavage reactions, the ring structure opens up into a straight chain. [Pg.309]

The following cycloalkene gives a mixture of two alcohols on hydroboration loi-lowed by oxidation. Draw the structures of both, and explain the result. [Pg.226]

A number of complexes AuCIL have been made those with cycloalkenes are most stable decomposing at 50-100°C. At present, few structural data are available, an exception being for AuCl(cyclooctene) (Figure 4.42) which has a structure with r/2 bonding of the alkene (Figure 4.43) [183]. [Pg.319]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Bis(diamino)alanes (R2N)2A1H were used for the hydroalumination of terminal and internal alkenes [18, 19]. TiCb and CpjTiCb are suitable catalysts for these reactions, whereas CpjZrCb exhibits low catalytic activity. The hydroaluminations are carried out in benzene or THF soluhon at elevated temperatures (60°C). Internal linear cis- and trans-alkenes are converted into n-alkylalanes via an isomerization process. Cycloalkenes give only moderate yields tri- and tetrasubstituted double bonds are inert. Hydroaluminahon of conjugated dienes like butadiene and 1,3-hexa-diene proceeds with only poor selechvity. The structure of the hydroaluminahon product of 1,5-hexadiene depends on the solvent used. While in benzene cyclization is observed, the reaction carried out in THF yields linear products (Scheme 2-10). [Pg.57]

It has been shown that [(r]6-arene)RuCl2]2 6 and [(r 6-arene)RuCl2] PR3 7 complexes can be activated in situ to afford active metathesis catalysts, either on treatment with diazoalkanes [15] or by UV irradiation [16]. The structure of the active species thus formed is unknown, but it initiates the ring opening metathesis polymerization reactions (ROMP) of various cycloalkenes very efficiently. Therefore these in situ recipes may also be useful in the context of preparative organic chemistry. [Pg.55]

The data in Table 10.1 suggest that the reactivity of epoxide hydrolase toward alkene oxides is highly variable and appears to depend, among other things, on the size of the substrate (compare epoxybutane to epoxyoctane), steric features (compare epoxyoctane to cycloalkene oxides), and electronic factors (see the chlorinated epoxides). In fact, comprehensive structure-metabolism relationships have not been reported for substrates of EH, in contrast to some narrow relationships that are valid for closely related series of substrates. A group of arene oxides, along with two alkene oxides to be discussed below (epoxyoctane and styrene oxide), are compared as substrates of human liver EH in Table 10.2 [119]. Clearly, the two alkene oxides are among the better substrates for the human enzyme, as they are for the rat enzyme (Table 10.1). [Pg.634]

A systematic study has confirmed the low activity of EHs toward cycloalkene oxides (1,2-epoxycycloalkanes, 10.123) [184], In the presence of mouse liver microsomal EH, activity was very low for cyclopentene oxide and cyclohexene oxide (10.123, n = 1 and 2, respectively), highest for cyclo-heptene oxide (10.123, n = 3), and decreased sharply for cyclooctene oxide (10.123, n = 4) and higher homologues. Mouse liver cytosolic EH showed a different structure-activity relationship in that the highest activity involved cyclodecene oxide (10.123, n = 6). With the exception of cyclohexene oxide, which exhibited an IC50 value toward microsomal EH in the p.M range, cycloalkene oxides were also very weak inhibitors of both microsomal and cytosolic EH. [Pg.660]

Few examples of preparatively useful intermolecular C-H insertions of electrophilic carbene complexes have been reported. Because of the high reactivity of complexes capable of inserting into C-H bonds, the intermolecular reaction is limited to simple substrates (Table 4.9). From the results reported to date it seems that cycloalkanes and electron-rich heteroaromatics are suitable substrates for intermolecular alkylation by carbene complexes [1165]. The examples in Table 4.9 show that intermolecular C-H insertion enables highly convergent syntheses. Elaborate structures can be constructed in a single step from readily available starting materials. Enantioselective, intermolecular C-H insertions with simple cycloalkenes can be realized with up to 93% ee by use of enantiomerically pure rhodium(II) carboxylates [1093]. [Pg.189]

Although the transition state for the exchange reaction may be described as the critical complex for the conversion of the half-hydrogenated state to either a jr-complexed olefin or an eclipsed vicinal diadsorbed alkane, the stereochemistry of hydrogenation of cycloalkenes on platinum at low pressures can be understood if the transition state has a virtually saturated structure. [Pg.150]

Structure effects on hydrogenation rate also have been studied in series of cycloalkenes. The influence of substituents on C=C is similar to that in aliphatic series (e.g., 52, 57, 90), but the point of interest is the observed... [Pg.175]

The structure of the base will also have a significant impact on the a//3 competition, particularly for cycloalkene oxides. One of the most intriguing examples of this effect was reported by Whitesell and White in 1975. They found that the reaction of LDA with... [Pg.1170]

As expected, the metathesis polymerization of more strained cycloalkenes, such as cyclobutene, occurs more rapidly than less strained structures such as cyclopentene. [Pg.165]

Little is known about the R/S isomerism (i.e., erythro and threo ditactic structures are possible) at the stereocenters that result from double-bond polymerization. Cycloheptene and higher cycloalkenes undergo only ROMP double-bond polymerization does not occur because the larger rings can accommodate the double bond without being highly strained. [Pg.683]

TABLE 15.2. Calculated Energies and Structures of cis- and trawi-Cycloalkenes... [Pg.728]

Introduction of the allene structure into cycloalkanes such as in 1,2-cyclononadiene (727) provides another approach to chiral cycloalkenes of sufficient enantiomeric stability. Although 127 has to be classified as an axial chiral compound like other C2-allenes it is included in this survey because of its obvious relation to ( )-cyclooctene as also can be seen from chemical correlations vide infra). Racemic 127 was resolved either through diastereomeric platinum complexes 143) or by ring enlargement via the dibromocarbene adduct 128 of optically active (J3)-cyclooctene (see 4.2) with methyllithium 143) — a method already used for the preparation of racemic 127. The first method afforded a product of 44 % enantiomeric purity whereas 127 obtained from ( )-cyclooctene had a rotation [a]D of 170-175°. The chirality of 127 was established by correlation with (+)(S)-( )-cyclooctene which in a stereoselective reaction with dibromocarbene afforded (—)-dibromo-trans-bicyclo[6.1 0]nonane 128) 144). Its absolute stereochemistry was determined by the Thyvoet-method as (1R, 87 ) and served as a key intermediate for the correlation with 727 ring expansion induced... [Pg.56]


See other pages where Cycloalkenes structures is mentioned: [Pg.235]    [Pg.235]    [Pg.1292]    [Pg.1308]    [Pg.17]    [Pg.32]    [Pg.258]    [Pg.272]    [Pg.306]    [Pg.342]    [Pg.65]    [Pg.242]    [Pg.317]    [Pg.101]    [Pg.148]    [Pg.164]    [Pg.135]    [Pg.138]    [Pg.292]    [Pg.632]    [Pg.267]    [Pg.494]    [Pg.260]    [Pg.106]    [Pg.185]   


SEARCH



Cycloalken

Cycloalkenes

© 2024 chempedia.info