Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic ethers, reactivity

Thus a plot of [M2 ] /O against [Mj ] allows determination of the value of Ki from the intercept and r2 from the slope. The resulting kinetic parameters are summarized in Table 13. The comparison with the basicity values, here given in terms of pi b > ain shows that in a copolymerization of cyclic ethers, reactivity correlates well with basicity. [Pg.323]

ClCHjCHjOH + NaHCOj —> HOCHjCHjOH + COj + NaCl When ethylene chlorohydrin is heated with sodium hydroxide solution, the highly reactive cyclic ether, ethylene oxide, is formed ... [Pg.444]

Polyether Polyols. Polyether polyols are addition products derived from cyclic ethers (Table 4). The alkylene oxide polymerisation is usually initiated by alkah hydroxides, especially potassium hydroxide. In the base-catalysed polymerisation of propylene oxide, some rearrangement occurs to give aHyl alcohol. Further reaction of aHyl alcohol with propylene oxide produces a monofunctional alcohol. Therefore, polyether polyols derived from propylene oxide are not truly diftmctional. By using sine hexacyano cobaltate as catalyst, a more diftmctional polyol is obtained (20). Olin has introduced the diftmctional polyether polyols under the trade name POLY-L. Trichlorobutylene oxide-derived polyether polyols are useful as reactive fire retardants. Poly(tetramethylene glycol) (PTMG) is produced in the acid-catalysed homopolymerisation of tetrahydrofuran. Copolymers derived from tetrahydrofuran and ethylene oxide are also produced. [Pg.347]

The one general exception to the rule that ethers don t typically undergo Sn2 reactions occurs with epoxides, the three-membered cyclic ethers that we saw in Section 7.8. Epoxides, because of the angle strain in the three-membered ring, are much more reactive than other ethers. They react with aqueous acid to give 1,2-diols, as we saw in Section 7.8, and they react readily with many other nucleophiles as well. Propene oxide, for instance, reacts with HC1 to give l-chloro-2-propanol by Snj2 backside attack on the less hindered primary carbon atom. We ll look at the process in more detail in Section 18.6. [Pg.370]

Grignard reagents react with oxetane, a four-membered cyclic ether, to yield primary alcohols, but the reaction is much slower than the corresponding reaction with ethylene oxide. Suggest a reason for the difference in reactivity between oxetane and ethylene oxide. [Pg.680]

The efficient rearrangement of these cyclic ethers may stem from the favorable juxtaposition of the reactive centers. Rearrangement of related acyclic substrates is notably less efficient. [Pg.66]

Studies on the cationic polymerization of cyclic ethers, cyclic formals, lactones and other heterocyclic compounds have proliferated so greatly in the last few years that a detailed review of the evidence concerning participation of oxonium and analogous ions in these reactions cannot be given here. Suffice it to say that there is firm evidence for a few, and circumstantial evidence for many such systems, that the reactive species are indeed ions and there appears to be no evidence to the contrary. A few systems will be discussed in sub-sections 3.2 and 4.4. [Pg.114]

Allenyl ethers 202, which are easily accessible by the methods described in Chapter 1, consequently lead to cyclic ethers 203. The alkoxyallenes were much more reactive than the alkylallenes from the previous example. Thus the amount of catalyst could be reduced to 0.1mol% and 820 turnovers were reached. Five- to seven-membered rings were isolated (Scheme 15.65) [131],... [Pg.909]

Combinations of a Lewis acid, protogen or cationogen, and a reactive cyclic ether (e.g., oxirane or oxetane) have been used to initiate the polymerization of less reactive cyclic ethers such as tetrahydrofuran [Saegusa and Matsumoto, 1968]. Initiation occurs by formation of the secondary and tertiary oxonium ions of the more reactive cyclic ether, which then act as initiators for polymerization of the less reactive cyclic ether. The reactive cyclic ether, referred to as a promoter, is used in small amounts relative to the cyclic ether being polymerized and increases the ability of the latter to form the tertiary oxonium ion. [Pg.556]

For copolymerizations proceeding by the activated monomer mechanism (e.g., cyclic ethers, lactams, /V-carboxy-a-amino acid anhydrides), the actual monomers are the activated monomers. The concentrations of the two activated monomers (e.g., the lactam anions in anionic lactam copolymerization) may be different from the comonomer feed. Calculations of monomer reactivity ratios using the feed composition will then be incorrect. [Pg.601]

There are very few reported copolymerizations between cyclic monomers and carbon-carbon double-bond monomers. Such copolymerizations would require a careful selection of the monomers and reaction conditions to closely match the reactivities of the different monomers and propagating centers. The almost complete absence of successes indicates that the required balancing of reactivities is nearly impossible to achieve. There are a few reports of copolymerizations between carbon-carbon double-bond monomers and cyclic ethers or acetals [Higashimura et al., 1967 Inoue and Aida, 1984 Yamashita et al., 1966],... [Pg.604]

Polyethers are prepared by the ring opening polymerization of three, four, five, seven, and higher member cyclic ethers. Polyalkylene oxides from ethylene or propylene oxide and from epichlorohydrin are the most common commercial materials. They seem to be the most reactive alkylene oxides and can be polymerized by cationic, anionic, and coordinated nucleophilic mechanisms. For example, ethylene oxide is polymerized by an alkaline catalyst to generate a living polymer in Figure 1.1. Upon addition of a second alkylene oxide monomer, it is possible to produce a block copolymer (Fig. 1.2). [Pg.43]

The ability of cyclic ethers to complex biologically important alkylammonium cations makes the choice of crown ethers as enzyme binding site models a natural one. In recent years a number of molecules containing both a crown ether-based substrate binding site and a potentially reactive group have been prepared as models for enzyme active sites (79PAC979, B-82MI52100). [Pg.753]

Unique among cyclic ethers are those with three-membered rings, the epoxides or oxiranes. Their large ring strains make them highly reactive. [Pg.300]

THF copolymerizes readily with other cyclic ethers such as oxides and oxetanes. The comonomers used include ethylene oxide (67), propylene oxide (99,100), epichlorohydrin (ECH) (101,102), phenyl glycidyl ether (102), 3.3-bis(chloromethyl) oxetane (BCMO) (25, 98, 101, 103) and 3-methyl-3-chloromethyl oxetane (103). Just as in THF homo-polymerization, a large variety of catalysts have veen used. In many cases the kinetics of copolymerization have been studied. Table 22 summarizes the monomer reactivity ratios, rx (THF), and r2 (comonomer) which have... [Pg.584]

It is generally agreed that propagation in the cationic polymerization of cyclic ethers occurs after nucleophilic attack by the monomer oxygen atom (equation 3). Therefore, many authors attempt to explain their copolymerization data by noting that the more basic monomer has the higher reactivity with the active chain end. The order of basicity which has been established (36, 38) is ... [Pg.585]


See other pages where Cyclic ethers, reactivity is mentioned: [Pg.143]    [Pg.143]    [Pg.3]    [Pg.744]    [Pg.65]    [Pg.13]    [Pg.242]    [Pg.157]    [Pg.54]    [Pg.102]    [Pg.100]    [Pg.431]    [Pg.125]    [Pg.137]    [Pg.424]    [Pg.154]    [Pg.417]    [Pg.419]    [Pg.18]    [Pg.548]    [Pg.564]    [Pg.602]    [Pg.95]    [Pg.389]    [Pg.559]    [Pg.690]    [Pg.3]    [Pg.109]    [Pg.389]    [Pg.559]    [Pg.353]    [Pg.22]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Ethere cyclic

Ethers cyclic

Ethers reactivity

© 2024 chempedia.info