Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic compounds Diels-Alder reaction

Mechanistically the 1,3-dipolar cycloaddition reaction very likely is a concerted one-step process via a cyclic transition state. The transition state is less symmetric and more polar as for a Diels-Alder reaction however the symmetry of the frontier orbitals is similar. In order to describe the bonding of the 1,3-dipolar compound, e.g. diazomethane 4, several Lewis structures can be drawn that are resonance structures ... [Pg.74]

Nitro compounds have been converted into various cyclic compounds via cycloaddidon reactions. In particular, nitroalkenes have proved to be nsefid in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes ind react v/ith dienes to yield 3-nitrocy-clohexenes. Nitroalkenes c in also act as heterodienes ind react v/ith olefins in the presence of Lewis acids to yield cyclic alkyl nkronates, which undergo [3- 2 cycloaddidon. Nitro compounds are precursors for nitnie oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3- 2 cycloaddldon reacdons. Thus, nitro compounds play important roles in the chemistry of cycloaddidon reacdons. In this chapter, recent developments of cycloaddinon chemistry of nitro compotmds and their derivadves are summarized. [Pg.231]

In the Diels-Alder reaction with inverse electron demand, the overlap of the LUMO of the 1-oxa-l,3-butadiene with the HOMO of the dienophile is dominant. Since the electron-withdrawing group at the oxabutadiene at the 3-position lowers its LUMO dramatically, the cycloaddition as well as the condensation usually take place at room or slightly elevated temperature. There is actually no restriction for the aldehydes. Thus, aromatic, heteroaromatic, saturated aliphatic and unsaturated aliphatic aldehydes may be used. For example, a-oxocarbocylic esters or 1,2-dike-tones for instance have been employed as ketones. Furthermore, 1,3-dicarbonyl compounds cyclic and acyclic substances such as Meldmm s acid, barbituric acid and derivates, coumarins, any type of cycloalkane-1,3-dione, (1-ketoesters, and 1,3-diones as well as their phosphorus, nitrogen and sulfur analogues, can also be ap-... [Pg.161]

Interestingly, we were intrigued by the ESI mass spectrum of the compound, as the observed base peak consisted of [M-S02+Na]+. This led us to explore a thermal retro-Diels-Alder reaction that could afford the desired enone 69. It is noteworthy that the chemistry of cyclic enol-sulfites would appear to be an under-explored area with a few references reporting their isolation being found [57]. At last, we were also able to prepare epoxy ketone 70 from 69 in three steps, albeit epoxidation did not take place unless the TES group was removed. Spartan models reaffirmed our initial conformational assessment of enone 69 and epoxy ketone 70, which contain sp3-hybridized C8a and s/r-hybridized C8b (p s e u d o-. v/r - h y b r i d i zed C8b for 70) at the AB-ring junction (Fig. 8.12) and displayed the desired twisted-boat conformation in A-ring. [Pg.201]

It is the combination of exceptional reactivity and reasonable stability, either as a solid or in solution, that makes PTAD such an ideal dienophile. However, PTAD is decomposed to N2, CO and phenyl isocyanate by the action of UV light.61 The cyclic ADC compounds (6-23) all undergo the Diels-Alder reaction, although with the exception of phthalazine-l,4-dione (13, R = H), they have been used only occasionally. l,3,4-Thiadiazole-2,5-dione (11) is of comparable reactivity to PTAD,38 but like the other cyclic compounds (6-23) has the slight disadvantage in that it has to be generated in situ. [Pg.8]

The copper complex of these bis(oxazoline) compounds can also be used for hetero Diels-Alder reactions of acyl phosphonates with enol ethers.43 5 A favorable acyl phosphonate-catalyst association is achieved via complexation between the vicinal C=0 and P=0 functional groups. The acyl phosphonates are activated, leading to facile cycloaddition with electron-rich alkenes such as enol ethers. The product cyclic enol phosphonates can be used as building blocks in the asymmetric synthesis of complicated molecules. Scheme 5-36 shows the results of such reactions. [Pg.296]

It has long been known that unsaturated compounds containing a delocalized system of 71 electrons can rearrange into cyclic compounds or other n systems. Such reactions were only incidentally studied until 1930. 0. Diels and K. Alder published their first paper on diene synthesis (which was later given the name Diels-Alder reaction) in 1928. Subsequent work of K. Alder and G. Stein (1933 and 1937) proved the generality of the reaction and its high regio and stereo selectivity. This led to the interest on thermal transformations in unsaturated compounds. [Pg.30]

Intramolecular Diels-Alder reactions have been widely used to prepare cyclic compounds [269]. [Pg.170]

A semiempirical AMI study of the inverse-electron-demand Diels-Alder reaction of 4-substituted 6-nitrobenzofurans with enol ethers and enamines favours a stepwise mechanism involving short-lived diradical intermediates. The inverse-electron-demand intermolecular Diels-Alder reactions of 3,6-bis(trifluoromethyl)-l,2,4,5-tetra-zine with acyclic and cyclic dienophiles followed by the elimination of N2 produce 4,5-dihydropyridazines, which cycloadd further to yield cage compounds. The preparation of jS-carbolines (90) via an intramolecular inverse-electron-demand Diels-Alder... [Pg.471]

An extensive review of the hetero-Diels-Alder reactions of 1-oxabuta-1,3-dienes has been published. Ab initio calculations of the Diels-Alder reactions of prop-2-enethial with a number of dienophiles show that the transition states of all the reactions are similar and synchronous.Thio- and seleno-carbonyl compounds behave as superdienophiles in Diels-Alder reactions with cyclic and aryl-, methyl-, or methoxy-substituted open-chain buta-1,3-dienes.The intramolecular hetero-Diels-Alder reactions of 4-benzylidine-3-oxo[l,3]oxathiolan-5-ones (100) produce cycloadducts (101) and (102) in high yield and excellent endo/exo-selectivity (Scheme 39). A density functional theoretical study of the hetero-Diels-Alder reaction between butadiene and acrolein indicates that the endo s-cis is the most stable transition structure in both catalysed and uncatalysed reactions.The formation and use of amino acid-derived chiral acylnitroso hetero-Diels-Alder reactions in organic synthesis has been reviewed. The 4 + 2-cycloadditions of A-acylthioformamides as dienophiles have been reviewed. ... [Pg.475]

Cycloisomerization represents another approach for the construction of cyclic compounds from acyclic substrates, with iridium complexes functioning as efficient catalysts. The reaction of enynes has been widely studied for example, Chatani et al. reported the transformation of 1,6-enynes into 1-vinylcyclopentenes using [lrCl(CO)3]n (Scheme 11.26) [39]. In contrast, when 1,6-enynes were submitted in the presence of [lrCl(cod)]2 and AcOH, cyclopentanes with two exo-olefin moieties were obtained (Scheme 11.27) [39]. Interestingly, however, when the Ir-DPPF complex was used, the geometry of olefinic moiety in the product was opposite (Scheme 11.28) [17]. The Ir-catalyzed cycloisomerization was efficiently utilized in a tandem reaction along with a Cu(l)-catalyzed three-component coupling, Diels-Alder reaction, and dehydrogenation for the synthesis of polycyclic pyrroles [40]. [Pg.289]

Base-induced isomerization of propargyl amide 29a gives chiral ynamide 30a, which is subjected to ring-closure metathesis to afford cyclic enamide 31a. Diels-Alder reaction of 31a with dimethyl acetylene dicarboxylate (DMAD) gives quinoline derivative 32. In a similar manner, propargyl amide 29b is converted into ynamide 30b, RCM of which gives bicyclic compounds 31b and 31b in a ratio of 1 to 1 (Scheme 10). [Pg.279]

Since the CM products have a diene moiety, Diels-Alder reaction is readily applied, and cyclic compounds 48 are available in high yields (Scheme... [Pg.284]

In the case of a cyclic conjugated diene, the Diels-Alder reaction yields a bridged bicyclic compound. A bridged bicyclic compound contains two rings that share two nonadjacent carbons. For example, cyclopentadiene reacts with ethylene to produce norbornene. [Pg.279]

A special case of the preparation of cyclobutanes from 1,5-dienes via valence isomerization is the use of acyclic or cyclic 1,5,7-trienes which give four-membered rings via an intramolecular [7t + 7ts2] cycloaddition (Diels-Alder reaction). This variant is illustrated for monocyclic tricnes 18 and 20 where two 71-bonds are transformed into a-bonds, resulting in tricyclic compounds 1968 and 21.09... [Pg.243]

The substrate for the synthesis of cyclobutanes by elimination of molecular nitrogen is the 3,4,5,6-tetrahydropyridazine skeleton 1. The most important methods for obtaining these compounds are the hetero Diels-Alder reaction of suitable dienes with azo dienophiles followed by oxidative hydrolysis of the adducts, and the oxidation of six-membered cyclic hydrazines (see Houben-Weyl, Vol. E16d, pp 1-111 and ref 1). [Pg.351]

The chiral organocopper compound (186) adds diastereoselectively to 2-methyl-2-cyclopentenone, allowing the preparation of optically active steroid CD-ring building blocks (Scheme 68).202-204 A related method was applied to a synthesis of the steroid skeleton via an intramolecular (transannular) Diels-Alder reaction of a macrocyclic precursor.203 Chiral acetone anion equivalents based on copper azaeno-lates derived from acetone imines were shown to add to cyclic enones with good selectivity (60-80% ee, after hydrolysis).206-208 Even better ee values are obtained with the mixed zincate prepared from (187) and dimethylzinc (Scheme 69). Other highly diastereoselective but synthetically less important 1,4-additions of chiral cuprates to prochiral enones were reported.209-210... [Pg.227]

Allylic nitro compounds containing a suitable dipolarophile undergo Diels-Alder cycloaddition to alkenes in the presence of tin(lV) chloride affording cyclic nitronic esters (Scheme 16).26 Nitronic ester (59) could not be isolated but spontaneously cyclized to the 5,5-fiised cyclic product (60), isolated in 68% yield. The nitronic esters (61a) and (61b) were isolated from the Diels-Alder reaction and could be separated. Heating (61a) in refluxing benzene afforded the 5,6-fused dipolar cydization product (62a) in 93% (68% overall) yield (61b) likewise afforded (62b) in 62% (11% overall) yield. Either (62a) or (62b) could be converted to the tricyclic lactam (63) by catalytic hydrogenolysis followed by lactamiza-... [Pg.1122]

Another approach for the construction of rings is to use reactions which start with two acyclic compounds and produce cyclic products. There are many of these processes, but the most used and most useful is the Diels-Alder reaction. This is a reaction between a diene and an olefin to give a new six-membered ring. It is also termed a 4 + 2 cycloaddition because one partner (the diene) containing four 7r electrons adds to a two-electron fragment (the olefin) containing two it electrons to yield a ring. [Pg.312]

As seen in the preceding sections, many multicomponent procedures are based on the production of conjugated dienes that are in situ involved in Diels-Alder reactions to obtain polycyclic compounds. In recent years, intramolecular enyne metathesis has become a very popular method by which to access cyclic conjugated dienes [172]. In line with this, Lee [173] has developed a new three-component re-... [Pg.269]

Cycloadditions are useful for the preparation of cyclic ompounds. Several thermal and photoactivated cycloadditions, typically [4+2] (Diels-Alder reaction), are known. They proceed with functionalized electronically activated dienes and monenes. However, various cycloaddition reactions of alkenes and alkynes without their electronical activation, either mediated or catalysed by transition metal complexes under milder conditions, are known, offering a useful synthetic route to various cyclic compounds in one step. Transition metal complexes are regarded as templates and the reactions proceed with or without forming metallacycles [49]. [Pg.238]


See other pages where Cyclic compounds Diels-Alder reaction is mentioned: [Pg.92]    [Pg.207]    [Pg.17]    [Pg.119]    [Pg.52]    [Pg.551]    [Pg.239]    [Pg.7]    [Pg.561]    [Pg.385]    [Pg.126]    [Pg.149]    [Pg.17]    [Pg.467]    [Pg.293]    [Pg.358]    [Pg.115]    [Pg.171]    [Pg.7]    [Pg.205]    [Pg.92]    [Pg.1426]   


SEARCH



Cyclic compounds

Cyclic reactions

Diels-Alder reactions compounds

© 2024 chempedia.info