Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Curves, anodic passivation

The use of the potentiostatic method has helped to show that the process of self-passivation is practically identical to that which occurs when the metal is made anodically passive by the application of an external current" . The polarisation curve usually observed is shown schematically in Fig. 19.37a. Without the use of a potentiostat, the active portion of the curve AB would make a sudden transition to the curve DE, e.g. along curve AFE or AFD, and observation of the part of the curve BCDE during anodic polarisation was not common until the potentiostat was used. [Pg.1110]

Figure 11. Schematic diagram of anodic polarization curve of passive-metal electrode when sweeping electrode potential in the noble direction. The dotted line indicates the polarization curve in the absence of Cl-ions, whereas the solid line is the polarization curve in the presence of Cl ions.7 Ep, passivation potential Eb, breakdown potential Epit> the critical pitting potential ETP, transpassive potential. (From N. Sato, J, Electrochem. Soc. 129, 255, 1982, Fig. 1. Reproduced by permission of The Electrochemical Society, Inc.)... Figure 11. Schematic diagram of anodic polarization curve of passive-metal electrode when sweeping electrode potential in the noble direction. The dotted line indicates the polarization curve in the absence of Cl-ions, whereas the solid line is the polarization curve in the presence of Cl ions.7 Ep, passivation potential Eb, breakdown potential Epit> the critical pitting potential ETP, transpassive potential. (From N. Sato, J, Electrochem. Soc. 129, 255, 1982, Fig. 1. Reproduced by permission of The Electrochemical Society, Inc.)...
FIGURE 22.24 Anodic polarization curves for passivation and transpassivation of metallic iron and nickel in 0.5 kmol m-3 sulfuric acid solution with inserted sketches for electronic energy diagrams of passive films [32] /ip = passivation potential, TP = transpassivation potential, fb = flat band potential, /Fe = anodic dissolution current of metallic iron, Nl = anodic dissolution current of metallic nickel, and io2 — anodic oxygen evolution current. [Pg.561]

A metal is passive if it resists corrosion in strong oxidizing solutions or at appUed anodic polarization [4—9]. Active-passive metal passivates through interaction with oxidizing agents or anodic polarization. A metal is defined as active-passive if it possesses three regions in the polarization curve active, passive, and a transpassive region. A typical anodic polarization curve of an active-passive metal is shown in Fig. 1.3. [Pg.6]

FIG. 11—Anodic polarization curve for passive corrosion systems. [Pg.791]

Figure 8-8. Anodic and cathodic polarization curves for passive and corroding reinforcing steel with the respective corrosion potentials. Figure 8-8. Anodic and cathodic polarization curves for passive and corroding reinforcing steel with the respective corrosion potentials.
Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Spontaneous Passivation The anodic nose of the first curve describes the primary passive potential Epp and critical anodic current density (the transition from active to passive corrosion), if the initial active/passive transition is 10 lA/cm or less, the alloy will spontaneously passivate in the presence of oxygen or any strong oxidizing agent. [Pg.2432]

These three passive systems are important in the technique of anodic protection (see Chapter 21). The kinetics of the cathodic partial reaction and therefore curves of type I, II or III depend on the material and the particular medium. Case III can be achieved by alloying additions of cathodically acting elements such as Pt, Pd, Ag, and Cu. In principle, this is a case of galvanic anodic protection by cathodic constituents of the microstructure [50]. [Pg.61]

Fig. 21-6 The dependence of the passivation process on the shape of the cathodic partial current potential curve (a) Anodic partial current potential curve, (b) cathodic partial current-potential curve without local cathode rest potential (c) cathodic partial current potential curve with local cathode rest potential I7j p. Fig. 21-6 The dependence of the passivation process on the shape of the cathodic partial current potential curve (a) Anodic partial current potential curve, (b) cathodic partial current-potential curve without local cathode rest potential (c) cathodic partial current potential curve with local cathode rest potential I7j p.
It is now appropriate to, consider the kinetics of the, hnodic reaction with particular refer ce to the phenomenon of passivity, but since the ml h anism is dealt with in detail in Seetion 1.5 this discussion will, place the emphasis on the anodic i curves. [Pg.105]

The typical features of a metal/solution system that exhibits an active to passive transition is shown in Fig. 1.33, which represents diagrammatically the potentiostatically determined anodic / curve for iron in HjS04. ... [Pg.107]

Fig. 1.34 Corrosion and passivation of Fe-18Cr-SNi stainl s steel. Potentiosiatic anodic curve JKLM, hydrogen evolution reaction, curve Hl low concentration of dissolved oxygen, curve t> FG, high concentration of dissolved oxygen, curve AflC (Section 3... Fig. 1.34 Corrosion and passivation of Fe-18Cr-SNi stainl s steel. Potentiosiatic anodic curve JKLM, hydrogen evolution reaction, curve Hl low concentration of dissolved oxygen, curve t> FG, high concentration of dissolved oxygen, curve AflC (Section 3...
Passivity of a metal lies in contrast to its activity, in which the metal corrodes freely under an anodic driving force. The passive state is well illustrated by reference to a classical polarisation curve prepared poten-tiostatically or potentiodynamically (Figure 1.39). As the potential is raised... [Pg.119]

Fig. 1.39 Schematic anodic polarisation curve for a metal. Region AB describes active dissolution of the metal. BC is the active/passive transition, with passivation commencing at B. Passivation is complete only at potentials higher than C. The metal is passive over the range CD... Fig. 1.39 Schematic anodic polarisation curve for a metal. Region AB describes active dissolution of the metal. BC is the active/passive transition, with passivation commencing at B. Passivation is complete only at potentials higher than C. The metal is passive over the range CD...
Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration. Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration.
Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive... Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive...

See other pages where Curves, anodic passivation is mentioned: [Pg.232]    [Pg.327]    [Pg.328]    [Pg.45]    [Pg.53]    [Pg.495]    [Pg.138]    [Pg.261]    [Pg.105]    [Pg.60]    [Pg.639]    [Pg.215]    [Pg.219]    [Pg.2722]    [Pg.2726]    [Pg.2430]    [Pg.2431]    [Pg.2431]    [Pg.2431]    [Pg.2431]    [Pg.2437]    [Pg.59]    [Pg.61]    [Pg.70]    [Pg.475]    [Pg.484]    [Pg.95]    [Pg.109]    [Pg.119]    [Pg.121]    [Pg.124]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Anodic passivation

Anodic passivity

© 2024 chempedia.info