Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Currents anomalous

In routine data collection for macromolecular crystallography we are interested in knowing the wavelength to =0.001 A, whereas in current anomalous scattering experiments an accuracy of 0.0001 A is required. Hence, the values of 2d for the (111) and (220) planes of silicon and germanium are given in table A3.4 to four decimal places calculated... [Pg.526]

Finite Element Study of the Anomalous Behaviour of Remote Field Eddy Currents Proc. 7th Int. Conf on Offshore Mechanics, Houston, Texas 1988... [Pg.317]

Fig. 4X When x-cut quartz is subjected to impact loading whose duration is less than wave transit time, an anomalous current pulse can be observed after the stress release. The diagram shows locations at which experiments were conducted and delineates the region of normal and anomalous response (after Graham and Ingram ([72G03]). Fig. 4X When x-cut quartz is subjected to impact loading whose duration is less than wave transit time, an anomalous current pulse can be observed after the stress release. The diagram shows locations at which experiments were conducted and delineates the region of normal and anomalous response (after Graham and Ingram ([72G03]).
Inward Rectifier K+ Channels. Figure 2 High [K+] inside cells relative to outside results in normal rectification, whereby outward (positive by convention) potassium currents (/) when cells are depolarized (is positive relative to EK), are biggerthan inward (negative) currents at hyperpolarized (negative) voltages. Inward or anomalous rectifiers show strong or weak inward rectification whereby outward currents are smaller than inward currents. [Pg.653]

The reduction wave of peroxydisulphate at dme starts at the potential of the anodic dissolution of mercury. The current-potential curve exhibits certain anomalous characteristics under various conditions. At potentials more negative than the electrocapillary maximum, a current minimum can be observed this is due to the electrostatic repulsion of the peroxydisulphate ion by the negatively charged electrode surface. The current minimum depends on the concentration and nature of the supporting electrolyte, and can be eliminated by the adsorption of capillary active cations of the type NR4. ... [Pg.548]

Two types of species have been detected in the /rSR spectrum of Ceo- One shows an unreacted or meta-stable muonium state which may well correspond to an internal state, muonium is trapped inside the cage Mu Ceo in the current notation [2]. This may be compared with normal muonium (Mu ) in diamond and many other elemental and compound semi-conductors, where the trapping site is in one of the cavities of tetrahedral symmetry. This state of CeoMu is not discussed here, but it does exhibit all the characteristics expected of the internal chemistry of Ceo-The anomalous muonium state. Mu, observed in semi-conductors and generally accepted to arise from muonium being trapped within one of the chemical bonds of the crystal, is unknown in molecules [5,6]. The constraints of the crystal lattice are necessary for the bond-centred state to be stable. [Pg.441]

The two-step charge transfer [cf. Eqs. (7) and (8)] with formation of a significant amount of monovalent aluminum ion is indicated by experimental evidence. As early as 1857, Wholer and Buff discovered that aluminum dissolves with a current efficiency larger than 100% if calculated on the basis of three electrons per atom.22 The anomalous overall valency (between 1 and 3) is likely to result from some monovalent ions going away from the M/O interface, before they are further oxidized electrochemically, and reacting chemically with water further away in the oxide or at the O/S interface.23,24 If such a mechanism was operative with activation-controlled kinetics,25 the current-potential relationship should be given by the Butler-Volmer equation... [Pg.411]

Once generated, these noise spikes cannot only appear on the input/output rails (causing related performance issues), but also infiltrate the IC control sections, causing it to behave anomalously, and unpredictably. We could even end up briefly losing the usual current limiting function too, leading to disastrous consequences. [Pg.149]

Table B.l. The currently known chemical elements, showing atomic number (Z), chemical symbol, name, relative atomic mass, ground-state electron configuration, and APH indices (t = turn number l-n = angular number) asterisks (, ) symbolize anomalous (APH non-conforming) ground-state electronic configurations, which are indicative of configurational near-degeneracy... Table B.l. The currently known chemical elements, showing atomic number (Z), chemical symbol, name, relative atomic mass, ground-state electron configuration, and APH indices (t = turn number l-n = angular number) asterisks (, ) symbolize anomalous (APH non-conforming) ground-state electronic configurations, which are indicative of configurational near-degeneracy...
The history of the observation of anomalous voltammetry is reviewed and an experimental consensus on the relation between the anomalous behavior and the conditions of measurement (e.g., surface preparation, electrolyte composition) is presented. The behavior is anomalous in the sense that features appear in the voltammetry of well-ordered Pt(lll) surfaces that had never before been observed on any other type of Ft surface, and these features are not easily understood in terms of current theory of electrode processes. A number of possible interpretations for the anomalous features are discussed. A new model for the processes is presented which is based on the observation of long-period icelike structures in the low temperature states of water on metals, including Pt(lll). It is shown that this model can account for the extreme structure sensitivity of the anomalous behavior, and shows that the most probable explanation of the anomalous behavior is based on capacitive processes involving ordered phases in the double-layer, i.e., no new chemistry is required. [Pg.37]

This chapter seeks to give the user of chemical separation methods the beginnings of a basis for understanding the methods described in this book and the ability to recognize normal behavior and to distinguish anomalous behavior . Justice to all the important theory would require several volumes of substantial size and especially if historical justice were to be given to the development of current models. At times the chapter s content will seem more conversational than hard scientific and the choice of style in any given instance, is deliberate. Stories are part of the history of separation methods, after all. [Pg.402]

The effect of thermal pion fluctuations on the specific heat and the neutrino emissivity of neutron stars was discussed in [27, 28] together with other in-medium effects, see also reviews [29, 30], Neutron pair breaking and formation (PBF) neutrino process on the neutral current was studied in [31, 32] for the hadron matter. Also ref. [32] added the proton PBF process in the hadron matter and correlation processes, and ref. [33] included quark PBF processes in quark matter. PBF processes were studied by two different methods with the help of Bogolubov transformation for the fermion wave function [31, 33] and within Schwinger-Kadanoff-Baym-Keldysh formalism for nonequilibrium normal and anomalous fermion Green functions [32, 28, 29],... [Pg.291]

Since diffusing species move randomly in all directions, the diffusing species may sense the self-affine fractal surface and the self-similar fractal surface in quite different ways. Nevertheless a little attention has been paid to diffusion towards self-affine fractal electrodes. Only a few researchers have realized this problem Borosy et al.148 reported that diffusion towards self-affine fractal surface leads to the conventional Cottrell relation rather than the generalized Cottrell relation, and Kant149,150 discussed the anomalous current transient behavior of the self-affine fractal surface in terms of power spectral density of the surface. [Pg.372]


See other pages where Currents anomalous is mentioned: [Pg.388]    [Pg.388]    [Pg.327]    [Pg.328]    [Pg.2828]    [Pg.180]    [Pg.132]    [Pg.283]    [Pg.900]    [Pg.367]    [Pg.1217]    [Pg.207]    [Pg.655]    [Pg.158]    [Pg.195]    [Pg.97]    [Pg.240]    [Pg.35]    [Pg.282]    [Pg.678]    [Pg.297]    [Pg.51]    [Pg.120]    [Pg.12]    [Pg.475]    [Pg.172]    [Pg.564]    [Pg.463]    [Pg.74]    [Pg.187]    [Pg.48]    [Pg.50]    [Pg.52]    [Pg.254]    [Pg.292]    [Pg.60]    [Pg.85]    [Pg.106]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.330 , Pg.334 , Pg.341 ]




SEARCH



Excess (anomalous) current inversion

© 2024 chempedia.info