Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cumulant theory

Rosina s theorem states that for an unspecified Hamiltonian with no more than two-particle interactions the ground-state 2-RDM alone has sufficient information to build the higher ROMs and the exact wavefunction [20, 51]. Cumulants allow us to divide the reconstruction functional into two parts (i) an unconnected part that may be written as antisymmetrized products of the lower RDMs, and (ii) a connected part that cannot be expressed as products of the lower RDMs. As shown in the previous section, cumulant theory alone generates all of the unconnected terms in RDM reconstruction, but cumulants do not directly indicate how to compute the connected portions of the 3- and 4-RDMs from the 2-RDM. In this section we discuss a systematic approximation of the connected (or cumulant) 3-RDM [24, 26]. [Pg.179]

Cumulant theory offers a systematic approach to reconstructing the 3- and 4-RDMs within the CSE from the 2-RDM, but it also provides insight into the stmcrnre of the CSE. Let us define C as the connected part of the left-hand side... [Pg.182]

The 2-RDM is automatically antisymmetric, but it may require an adjustment of the trace to correct the normalization. The functionals in Table I from cumulant theory allow us to approximate the 3- and the 4-RDMs from the 2-RDM and, hence, to iterate with the contracted power method. Because of the approximate reconstruction the contracted power method does not yield energies that are strictly above the exact energy. As in the full power method the updated 2-RDM in Eq. (116) moves toward the eigenstate whose eigenvalue has the largest magnitude. [Pg.193]

This decomposition of the 2-RDM is well known from the cumulant theory (see earlier chapters). F is the cumulant matrix of the 2-RDM. Since it arises from interactions in the Hamiltonian, it might also be called the pair correlation matrix. This definition of correlation differs from the traditional one since is the one-matrix of the correlated system and not that corresponding to independent particles. [Pg.406]

We assume that the observed interference is the cumulative effect of the contributions of the individual polymer molecules and that solute-solute interactions do not enter the picture. This effectively limits the model to dilute solutions. This restriction is not particularly troublesome, since our development of the Rayleigh theory also assumes dilute solutions. [Pg.695]

Where you devise original solutions to the measurement of characteristics the theory and development of the method should be documented and retained as evidence of the validity of the measurement method. Any new measurement methods should be proven by rigorous experiment to detect the measurement uncertainty and cumulative effect of the errors in each measurement process. The samples used for proving the method should also be retained so as to provide a means of repeating the measurements should it prove necessary. [Pg.407]

In this section we consider how to express the response of a system to noise employing a method of cumulant expansions [38], The averaging of the dynamical equation (2.19) performed by this technique is a rigorous continuation of the iteration procedure (2.20)-(2.22). It enables one to get the higher order corrections to what was found with the simplest perturbation theory. Following Zatsepin [108], let us expound the above technique for a density of the conditional probability which is the average... [Pg.85]

Q-branch rotational structure 179-82 spectra of nitrogen in argon 180 spectral collapse theory 150 spectral width 107 strong collision model 188 cumulant expansions 85-91... [Pg.296]

Instead of estimating -/ 1 ln(exp(-/W(f)) directly using (5.44), one can use cumulant expansion approaches, as in regular free energy perturbation theory (see e.g., [20, 39] for combining cumulant expansions about the initial and final states). Unbiased estimators for cumulants can be used. Probably the most useful relations involve averages and variances of the work ... [Pg.185]

Wu, Ruff and Faethl249 made an extensive review of previous theories and correlations for droplet size after primary breakup, and performed an experimental study of primary breakup in the nearnozzle region for various relative velocities and various liquid properties. Their experimental measurements revealed that the droplet size distribution after primary breakup and prior to any secondary breakup satisfies Simmons universal root-normal distribution 264]. In this distribution, a straight line can be generated by plotting (Z)/MMD)°5 vs. cumulative volume of droplets on a normal-probability scale, where MMD is the mass median diameter of droplets. The slope of the straight line is specified by the ratio... [Pg.161]

Vertzoni et al. (30) recently clarified the applicability of the similarity factor, the difference factor, and the Rescigno index in the comparison of cumulative data sets. Although all these indices should be used with caution (because inclusion of too many data points in the plateau region will lead to the outcome that the profiles are more similar and because the cutoff time per percentage dissolved is empirically chosen and not based on theory), all can be useful for comparing two cumulative data sets. When the measurement error is low, i.e., the data have low variability, mean profiles can be used and any one of these indices could be used. Selection depends on the nature of the difference one wishes to estimate and the existence of a reference data set. When data are more variable, index evaluation must be done on a confidence interval basis and selection of the appropriate index, depends on the number of the replications per data set in addition to the type of difference one wishes to estimate. When a large number of replications per data set are available (e.g., 12), construction of nonparametric or bootstrap confidence intervals of the similarity factor appears to be the most reliable of the three methods, provided that the plateau level is 100. With a restricted number of replications per data set (e.g., three), any of the three indices can be used, provided either non-parametric or bootstrap confidence intervals are determined (30). [Pg.237]

The density functional methods assessed in this study (B3LYP, BLYP, and LDA) all perform much worse for the enthalpies of formation of the larger molecules in the G3/99 set. This is due to a cumulative effect in the errors for the larger molecules in this test set. The errors are found to be approximately proportional to the number of pairs of electrons in the molecules but the methods are not improved significantly when a higher-level correction such as that used in G2 or G3 theory is added the DFT methods. Further correction schemes may be necessary to improve the performance of density functional methods for large molecules. [Pg.95]

The incorporation of non-Gaussian effects in the Rouse theory can only be accomplished in an approximate way. For instance, the optimized Rouse-Zimm local dynamics approach has been applied by Guenza et al. [55] for linear and star chains. They were able to obtain correlation times and results related to dynamic light scattering experiments as the dynamic structure factor and its first cumulant [88]. A similar approach has also been applied by Ganazzoli et al. [87] for viscosity calculations. They obtained the generalized ZK results for ratio g already discussed. [Pg.63]

The CSE allows us to recast A-representability as a reconstruction problem. If we knew how to build from the 2-RDM to the 4-RDM, the CSE in Eq. (12) furnishes us with enough equations to solve iteratively for the 2-RDM. Two approaches for reconstruction have been explored in previous work on the CSE (i) the explicit representation of the 3- and 4-RDMs as functionals of the 2-RDM [17, 18, 20, 21, 29], and (ii) the construction of a family of higher 4-RDMs from the 2-RDM by imposing ensemble representability conditions [20]. After justifying reconstmction from the 2-RDM by Rosina s theorem, we develop in Sections III.B and III.C the functional approach to the CSE from two different perspectives—the particle-hole duality and the theory of cumulants. [Pg.170]

The reconstruction functionals, derived in the previous section through the particle-hole duality, may also be produced through the theory of cumulants [21,22,24,26,39,55-57]. We begin by constructing a functional whose derivatives with respect to probe variables generate the reduced density matrices in second quantization. Because we require that additional derivatives increase the number of second quantization operators, we are led to the following exponential form ... [Pg.176]

The theory of cumulants allows us to partition an RDM into contributions that scale differently with the number N of particles. Because aU of the particles are connected by interactions, the cumulant RDMs scale linearly with the number N of particles. The unconnected terms in the p-RDM reconstruction formulas scale between N and W according to the number of connected RDMs in the wedge product. For example, the term scales as NP since all p particles are statistically independent of each other. By examining the scaling of terms with N in the contraction of higher reconstruction functionals, we may derive an important set of relations for the connected RDMs. [Pg.179]

Importantly, the anti-Hermitian CSE may be evaluated through second order of a renormalized perturbation theory even when the cumulant 3-RDM is neglected in the reconstruction. The anti-Hermitian part of the CSE [27, 31, 63] is the stationary condition for two-body unitary transformations of the A-particle wave-function [31, 32], and hence the two-body unitary transformations may easily be evaluated with the anti-Hermitian CSE and RDM reconstruction without the many-electron Schrodinger equation. The contracted Schrodinger equation in conjunction with the concepts of reconstruction and purification provides a new, important approach to computing the 2-RDM directly without the many-electron wavefunction. [Pg.198]

M. D. Benayoun and A. Y. Lu, Invariance of the cumulant expansion under l-particle unitary transformations in reduced density matrix theory. Chem. Phys. Lett. 387, 485 (2004). [Pg.201]

Following Ziesche [35, 55], in order to develop the theory of cumulants for noncommuting creation and annihilation operators (as opposed to classical variables), we introduce held operators /(x) and / (x) satisfying the anticommutation relations for a Grassmann held. [Pg.269]

Using cumulant reconstruction functionals A3[Ai, A2] and A4[Ai, A2], one can certainly derive closed, nonlinear equations for the elements of Ai and A2, which could be solved using an iterative procedure that does not exploit the reconstruction functionals at each iteration. Of the RDM reconstruction functionals derived to date, several [7, 8, 11] utilize the cumulant decompositions in Eqs. (25c) and (25d) to obtain the unconnected portions of D3 and D4 exactly (in terms of the lower-order RDMs), then use many-body perturbation theory to estimate the connected parts A3 and A4 in terms of Aj and A2, the latter essentially serving as a renormalized pair interaction. Reconstruction functionals of this type are equally useful in solving ICSE(l) and ICSE(2), but the reconstruction functionals introduced by Valdemoro and co-workers [25, 26] cannot be used to solve the ICSEs because they contain no connected terms in D3 or D4 (and thus no contributions to A3 or A4). [Pg.288]

There is a price to pay for the separability, or equivalently for the presence of only connected diagrams. Somewhat like in traditional many-body theory, one must be ready to accept so-caUed EPV (exclusion-principle violating) cumulants. Typical EPV cumulants are nonvanishing kk for k> n, while yj = 0 for k > n. [Pg.321]


See other pages where Cumulant theory is mentioned: [Pg.139]    [Pg.166]    [Pg.585]    [Pg.139]    [Pg.166]    [Pg.585]    [Pg.1645]    [Pg.307]    [Pg.307]    [Pg.122]    [Pg.366]    [Pg.48]    [Pg.318]    [Pg.5]    [Pg.218]    [Pg.282]    [Pg.133]    [Pg.319]    [Pg.41]    [Pg.72]    [Pg.724]    [Pg.236]    [Pg.240]    [Pg.241]    [Pg.178]    [Pg.693]    [Pg.20]    [Pg.482]    [Pg.177]    [Pg.181]    [Pg.263]   
See also in sourсe #XX -- [ Pg.139 , Pg.166 , Pg.176 , Pg.177 , Pg.178 , Pg.179 , Pg.180 , Pg.181 , Pg.182 , Pg.193 ]




SEARCH



© 2024 chempedia.info