Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystalline polymers alternating copolymers

It has been discovered that styrene forms a linear alternating copolymer with carbon monoxide using palladium II—phenanthroline complexes. The polymers are syndiotactic and have a crystalline melting point - 280° C (59). Shell Oil Company is commercializing carbon monoxide a-olefin plastics based on this technology (60). [Pg.507]

Some particularities of the extraction of ions from an aqueous organic phase, and of the phase catalyzed polyetherification will be summarized. These will represent the fundamentals of our work on the synthesis of some novel classes of functional polymers and sequential copolymers. Examples will be provided for the synthesis of functional polymers containing only cyclic imino ethers or both cyclic imino ethers as well as their own cationic initiator attached to the same polymer backbone ABA triblock copolymers and (AB)n alternating block copolymers and a novel class of main chain thermotropic liquid crystalline polymers containing functional chain ends, i.e., polyethers. [Pg.96]

Three major topics of research which are based on phase transfer catalyzed reactions will be presented with examples. These refer to the synthesis of functional polymers containing functional groups (i.e., cyclic imino ethers) sensitive both to electrophilic and nucleophilic reagents a novel method for the preparation of regular, segmented, ABA triblock and (A-B)n alternating block copolymers, and the development of a novel class of main chain thermotropic liquid-crystalline polymers, i.e., polyethers. [Pg.99]

It should be added that alternating ethylene/2-butene copolymers can exhibit stereoregularity namely the ethylene/cA-2-butene copolymer, which possesses an erythro-diisotactic structure and is a crystalline polymer. It may be interesting to note that from the formal point of view the alternating eryt/zro-diisotactic ethylene/cA-2-butene copolymer, i.e. erythro-diisotactic poly[ethylene- //-(c/.v-2-butene)], can be treated as isotactic head-to-head and tail-to-tail polypropylene. Isomeric trans-2-bu. ene gives atactic amorphous copolymers with ethylene [2,82]. [Pg.185]

The most recent addition to the engineering polymer field is the ethylene/carbon monoxide (COPO) alternating copolymers initially introduced by Shell. The commercial polymer is highly crystalline and believed to contain small amounts of propylene to reduce the crystalline melting point to allow a broad window of process-ability. COPO should offer serious competition to polyacetal, PA, and PBT. With the favorable raw materials cost, COPO should be a successful and competitive entry. As is now expected with new polymers, intense blend patent activity accompanies the introduction. This has also occurred with COPO as is noted in various U.S. patents involving COPO blends (See Table 17.4). COPO polymers are available from Shell (Carilon ) and BP (Ketonex ). [Pg.1176]

Alternating copolymers were supposed to exhibit the lower crystallinity and the higher thermal stability, but the authors were not able to obtain such polymers as their synthesis method (condensation of 1 with dimethyldichlorosilane) did not lead to alternance. [Pg.5]

Theoretical models for other systems, such as star, branched, and ring polymers, random and alternating copolymers, graft and block copolymers are discussed in the book by Mattice and Suter [1]. Block copolymers are discussed in Chap. 32 of this Handbook [2]. Theories of branched and ring polymers are presented in the book by Yamakawa [3]. Liquid-crystalline polymers are discussed in the book by Grosberg and Khokhlov [4], and liquid crystalline elastomers in the recent book of Warner and Terentjev [5]. Bimodal networks are discussed by Mark and Erman [6,7]. Molecular theories of filled polymer networks are presented by Kloczkowski, Sharaf and Mark [8] and recently by Sharaf and Mark [9]. [Pg.67]


See other pages where Crystalline polymers alternating copolymers is mentioned: [Pg.72]    [Pg.21]    [Pg.121]    [Pg.105]    [Pg.140]    [Pg.150]    [Pg.104]    [Pg.490]    [Pg.86]    [Pg.22]    [Pg.178]    [Pg.225]    [Pg.622]    [Pg.15]    [Pg.203]    [Pg.91]    [Pg.15]    [Pg.239]    [Pg.344]    [Pg.122]    [Pg.140]    [Pg.401]    [Pg.103]    [Pg.676]    [Pg.715]    [Pg.142]    [Pg.362]    [Pg.527]    [Pg.775]    [Pg.69]    [Pg.608]    [Pg.39]    [Pg.174]    [Pg.578]    [Pg.665]    [Pg.12]    [Pg.39]    [Pg.470]    [Pg.165]   
See also in sourсe #XX -- [ Pg.105 , Pg.106 , Pg.107 , Pg.108 ]




SEARCH



Alternating copolymers

Alternative polymers

Polymer copolymers

Polymers alternating

© 2024 chempedia.info