Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal catalysts crystal structures

A wide variety of solid materials are used in catalytic processes. Generally, the (surface) structure of metal and supported metal catalysts is relatively simple. For that reason, we will first focus on metal catalysts. Supported metal catalysts are produced in many forms. Often, their preparation involves impregnation or ion exchange, followed by calcination and reduction. Depending on the conditions quite different catalyst systems are produced. When crystalline sizes are not very small, typically > 5 nm, the metal crystals behave like bulk crystals with similar crystal faces. However, in catalysis smaller particles are often used. They are referred to as crystallites , aggregates , or clusters . When the dimensions are not known we will refer to them as particles . In principle, the structure of oxidic catalysts is more complex than that of metal catalysts. The surface often contains different types of active sites a combination of acid and basic sites on one catalyst is quite common. [Pg.94]

However, in the case of multimetallic catalysts, the problem of the stability of the surface layer is cmcial. Preferential dissolution of one metal is possible, leading to a modification of the nature and therefore the properties of the electrocatalyst. Changes in the size and crystal structure of nanoparticles are also possible, and should be checked. All these problems of ageing are crucial for applications in fuel cells. [Pg.354]

Phosphate ester crystal structures have been determined of zinc 1,5,9-triazacyclononane including an interesting structure containing an oligophosphate bridged zinc unit.450 The zinc complex of 1,5,9-triazacyclododecane was studied as a hydrolysis catalyst for substituted phenyl acetates.451 Kinetic analysis suggested that hydrolysis occurs by a mechanism involving hydroxide attack of a metal-bound carbonyl. [Pg.1183]

Prior to this 1996 study, there had been no reports of boratabenzene complexes of early transition metals.42 An X-ray crystal structure of the catalyst revealed a C2-symmetric geometry that resembles Cp2Zr-based bent metallocenes. The bond lengths suggest a strong B-N it interaction (rotational barrier measured by NMR 18 kcal/mol) and a very weak Zr B interaction ( t 5 coordination of the boratabenzene ring). [Pg.114]

In many cases there is an interaction between the carrier and the active component of the catalyst so that the character of the active surface will change. For example, the electronic character of the supported catalyst may be influenced by the transfer of electrons across the catalyst-carrier interface. In some cases the carrier itself has a catalytic activity for the primary reaction, an intermediate reaction, or a subsequent reaction, and a dual-function catalyst is thereby obtained. Materials of this type are widely employed in reforming processes. There are other cases where the interaction of the catalyst and support are much more subtle and difficult to label. For example, the crystal size and structure of supported metal catalysts as well as the manner in which the metal is dispersed can be influenced by the nature of the support material. [Pg.200]

For the present purpose, we take the term ultrathin to refer to an evaporated metal film where the concentration of metal on the substrate is low enough for the film to consist of small isolated metal crystals. If the average concentration of metal atoms on the substrate is of the order of a monolayer or less, the metal crystals are small enough for ultrathin films to serve as models for highly dispersed metal catalysts, but where surface cleanliness and catalyst structure can be better controlled. [Pg.5]

MgO is a basic metal oxide and has the same crystal structure as NiO. As a result, the combination of MgO and NiO results in a solid-solution catalyst with a basic surface (171,172), and both characteristics are helpful in inhibiting carbon deposition (171,172,239). The basic surface increases C02 adsorption, which reduces or inhibits carbon-deposition (Section ALB). The NiO-MgO solid solution can control the nickel particle sizes in the catalyst. This control occurs because in the solid solution NiO has strong interactions with MgO and, as indicated by TPR data (26), the former oxide can no longer be easily reduced. Consequently, only a small amount of NiO is expected to be reduced, and thus small nickel particles are formed on the surface of the solid solution, smaller than the size necessary for coke formation. Indeed, the nickel particles on a reduced 16.7 wt% NiO/MgO solid-solution catalyst were too small to be observed by TEM (171). Furthermore, two additional important qualities stimulated the selection of MgO as a support its high thermal stability and low cost (250,251). [Pg.354]

We begin with the structure of a noble metal catalyst. The emphasis is on the preparation of rhodium on aluminum oxide and the nature of the metal-support interaction. Next we focus on a promoted surface in a review of potassium on noble metals. This section illustrates how single crystal techniques have been applied to investigate to what extent promoters perturb the surface of a catalyst. The third study deals with the sulfidic cobalt-molybdenum catalysts used in hydrotreating reactions. Here we are concerned with the composition and structure of the catalytically active... [Pg.246]

An X-ray crystal structure of 97 Cu(MeCN) complex displays a tetrahedral geometry at the metal, Fig. 10 (69). The metal center is surrounded by phenyl rings thereby forming a chiral environment. No speculation is advanced on the source of the selectivity and further reports on this catalyst are yet to appear. [Pg.35]


See other pages where Metal catalysts crystal structures is mentioned: [Pg.341]    [Pg.458]    [Pg.124]    [Pg.124]    [Pg.224]    [Pg.158]    [Pg.256]    [Pg.277]    [Pg.73]    [Pg.100]    [Pg.213]    [Pg.16]    [Pg.308]    [Pg.242]    [Pg.168]    [Pg.48]    [Pg.39]    [Pg.163]    [Pg.85]    [Pg.88]    [Pg.413]    [Pg.213]    [Pg.225]    [Pg.23]    [Pg.124]    [Pg.196]    [Pg.26]    [Pg.124]    [Pg.254]    [Pg.363]    [Pg.204]    [Pg.280]    [Pg.24]    [Pg.87]    [Pg.198]    [Pg.45]    [Pg.154]    [Pg.162]    [Pg.173]   
See also in sourсe #XX -- [ Pg.134 , Pg.135 ]




SEARCH



Catalysts structured

Catalysts, structures

Crystal structure catalysts

Metal crystals

Metallic crystal

Metallic crystal structures

Transition-metal sulfide catalysts crystal structure

© 2024 chempedia.info