Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal growth layers

The mechanism of crystal growth has been a topic of considerable interest. In the case of a perfect crystal, the starting of a new layer involves a kind of nucleation since the first few atoms added must occupy energy-rich positions. Becker and Doring [4],... [Pg.340]

Polymer crystals form by the chain folding back and forth on itself, with crystal growth occurring by the deposition of successive layers of these folded chains at the crystal edge. The resulting crystal, therefore, takes on a platelike structure, the thickness of which corresponds to the distance between folds. [Pg.205]

Epitaxial crystal growth methods such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) have advanced to the point that active regions of essentially arbitrary thicknesses can be prepared (see Thin films, film deposition techniques). Most semiconductors used for lasers are cubic crystals where the lattice constant, the dimension of the cube, is equal to two atomic plane distances. When the thickness of this layer is reduced to dimensions on the order of 0.01 )J.m, between 20 and 30 atomic plane distances, quantum mechanics is needed for an accurate description of the confined carrier energies (11). Such layers are called quantum wells and the lasers containing such layers in their active regions are known as quantum well lasers (12). [Pg.129]

Models used to describe the growth of crystals by layers call for a two-step process (/) formation of a two-dimensional nucleus on the surface and (2) spreading of the solute from the two-dimensional nucleus across the surface. The relative rates at which these two steps occur give rise to the mononuclear two-dimensional nucleation theory and the polynuclear two-dimensional nucleation theory. In the mononuclear two-dimensional nucleation theory, the surface nucleation step occurs at a finite rate, whereas the spreading across the surface is assumed to occur at an infinite rate. The reverse is tme for the polynuclear two-dimensional nucleation theory. Erom the mononuclear two-dimensional nucleation theory, growth is related to supersaturation by the equation. [Pg.344]

Flow of mother Hquor through the cooled tubes is initiated, and crystals are grown on the tube surfaces. The heat transfer rate should be controUed so as to moderate crystal growth, thereby producing a relatively uniform layer of high purity soHds. [Pg.359]

Rate of Growth Crystal growth is a layer-by-layer process, and since growth can occur only at the face of the crystal, material must be transported to that face from the bulk of the solution. Diffusional... [Pg.1657]

Crystal growth is a layer-by-layer process, and the retention time required in most commercial equipment to produce crystals of the size normally desired is on the order of 2 to 6 h. On the other hand, nucleation in a supersaturated solution can be generated in a fraction... [Pg.1669]

An intrinsic surface is built up between both phases in coexistence at a first-order phase transition. For the hard sphere crystal-melt interface [51] density, pressure and stress profiles were calculated, showing that the transition from crystal to fluid occurs over a narrow range of only two to three crystal layers. Crystal growth rate constants of a Lennard-Jones (100) surface [52] were calculated from the fluctuations of interfaces. There is evidence for bcc ordering at the surface of a critical fee nucleus [53]. [Pg.760]

Chapters 15 through 17 are devoted to mathematical modeling of particular systems, namely colloidal suspensions, fluids in contact with semi-permeable membranes, and electrical double layers. Finally, Chapter 18 summarizes recent studies on crystal growth process. [Pg.944]

In the first step, lipid model membranes have been generated (Fig. 15) on the air/liquid interface, on a glass micropipette (see Section VIII.A.1), and on an aperture that separates two cells filled with subphase (see Section VIII.A.2). Further, amphiphilic lipid molecules have been self-assembled in an aqueous medium surrounding unilamellar vesicles (see Section VIII.A.3). Subsequently, the S-layer protein of B. coagulans E38/vl, B. stearother-mophilus PV72/p2, or B. sphaericus CCM 2177 have been injected into the aqueous subphase (Fig. 15). As on solid supports, crystal growth of S-layer lattices on planar or vesicular lipid films is initiated simultaneously at many randomly distributed nucleation... [Pg.363]

It has been shown by FM that the phase state of the lipid exerted a marked influence on S-layer protein crystallization [138]. When the l,2-dimyristoyl-OT-glycero-3-phospho-ethanolamine (DMPE) surface monolayer was in the phase-separated state between hquid-expanded and ordered, liquid-condensed phase, the S-layer protein of B. coagulans E38/vl was preferentially adsorbed at the boundary line between the two coexisting phases. The adsorption was dominated by hydrophobic and van der Waals interactions. The two-dimensional crystallization proceeded predominately underneath the liquid-condensed phase. Crystal growth was much slower under the liquid-expanded monolayer, and the entire interface was overgrown only after prolonged protein incubation. [Pg.367]

The arrow indicates the liquid barrier layer. This use of a barrier melt illustrates that there are several ways to grow crystals which would be difficult to obtain under "ordinary" means of crystal growth, i.e.-prevention of oxidation and evaporation of GaAs during crystal growth. [Pg.270]

A comment regarding the dispersion of the Ru-Rh/Si02 and the Ru-Ir/Si02 is in order. For the case of the supported Pt-Ru catalysts. Increases in dispersion as a result of clustering were very large ( ). This effect was particularly noticeable for bimetallic particles which conform to the cherry model. Evidently, the formation of an inner core enriched in one of the two metals, followed by an outer layer enriched in the other metal, inhibits further crystal growth. For the alumina-supported Pt-Ru bimetallic clusters, the effect, although present, is considerably smaller. [Pg.303]

Such a lattice has two principal directions in which crystal growth can take place. One is perpendicular to the face of the cube. Growth in this direction proceeds by laying down layers of atoms, each composed of both sodium and chlorine atoms. Another direction is a diagonal of the cube. Growth in this direction proceeds by laying down alternate layers of all sodium atoms and all chlorine atoms. [Pg.61]

There are obviously two steps involved in the preparation of crystal matter from a solution, the crystals must first form and then grow. The formation of a new solid phase either on an inert particle in the solution or in the solution itself is called nucleation. The increase in size of this nucleus with a layer-by-layer addition of solute is called crystal growth. Both nucleation and crystal growth have supersaturation as a common driving force. Unless a solution is supersaturated, crystals can neither form nor grow. The particle-size distribution of this weight, however, will depend on the relationship between the two processes of nucleation and growth. [Pg.174]


See other pages where Crystal growth layers is mentioned: [Pg.421]    [Pg.208]    [Pg.118]    [Pg.135]    [Pg.133]    [Pg.445]    [Pg.13]    [Pg.366]    [Pg.366]    [Pg.4]    [Pg.857]    [Pg.518]    [Pg.619]    [Pg.248]    [Pg.253]    [Pg.322]    [Pg.278]    [Pg.93]    [Pg.153]    [Pg.218]    [Pg.219]    [Pg.219]    [Pg.225]    [Pg.358]    [Pg.142]    [Pg.86]    [Pg.195]    [Pg.419]    [Pg.212]    [Pg.314]    [Pg.423]    [Pg.430]    [Pg.263]    [Pg.198]    [Pg.174]   
See also in sourсe #XX -- [ Pg.218 , Pg.242 ]




SEARCH



Layer growth

Layered crystals

Layered growth

© 2024 chempedia.info