Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-viscosity

T critical stress where r transitions from ijg to the power law regime for the Cross viscosity model... [Pg.107]

Wan and Isayev (1996) examined a hybrid approach of control-volume finite-element and finite-difference modelling of injection moulding of rubber compounds. The effect of vulcanization on viscosity and yield stress during cavity filling is reported. On comparing two versions of the modified Cross viscosity models - with and without the effect of cure - the use of a viscosity model that accounts for the cure was found to improve the accuracy of the cavity-pressure-prediction models. When the modified Cross model was further extended to include the yield stress and was implemented in the simulation program a significant improvement in the prediction of cavity pressure was obtained in the case of low injection speed. [Pg.413]

The modification of the surface force apparatus (see Fig. VI-4) to measure viscosities between crossed mica cylinders has alleviated concerns about surface roughness. In dynamic mode, a slow, small-amplitude periodic oscillation was imposed on one of the cylinders such that the separation x varied by approximately 10% or less. In the limit of low shear rates, a simple equation defines the viscosity as a function of separation... [Pg.246]

As a multidimensional PES for the reaction from quantum chemical calculations is not available at present, one does not know the reason for the surprismg barrier effect in excited tran.s-stilbene. One could suspect diat tran.s-stilbene possesses already a significant amount of zwitterionic character in the confomiation at the barrier top, implying a fairly Tate barrier along the reaction path towards the twisted perpendicular structure. On the other hand, it could also be possible that die effective barrier changes with viscosity as a result of a multidimensional barrier crossing process along a curved reaction path. [Pg.857]

The difhision and viscosity cross sections are given by the transport cross sections and respectively. [Pg.2010]

The momentum-transfer or diflfiision cross section is and the viscosity cross section is... [Pg.2035]

Flow behaviour of polymer melts is still difficult to predict in detail. Here, we only mention two aspects. The viscosity of a polymer melt decreases with increasing shear rate. This phenomenon is called shear thinning [48]. Another particularity of the flow of non-Newtonian liquids is the appearance of stress nonnal to the shear direction [48]. This type of stress is responsible for the expansion of a polymer melt at the exit of a tube that it was forced tlirough. Shear thinning and nonnal stress are both due to the change of the chain confonnation under large shear. On the one hand, the compressed coil cross section leads to a smaller viscosity. On the other hand, when the stress is released, as for example at the exit of a tube, the coils fold back to their isotropic confonnation and, thus, give rise to the lateral expansion of the melt. [Pg.2534]

The drop in pressure when a stream of gas or liquid flows over a surface can be estimated from the given approximate formula if viscosity effects are ignored. The example calculation reveals that, with the sorts of gas flows common in a concentric-tube nebulizer, the liquid (the sample solution) at the end of the innermost tube is subjected to a partial vacuum of about 0.3 atm. This vacuum causes the liquid to lift out of the capillary, where it meets the flowing gas stream and is broken into an aerosol. For cross-flow nebulizers, the vacuum created depends critically on the alignment of the gas and liquid flows but, as a maximum, it can be estimated from the given formula. [Pg.141]

Very strong stirring equipment is needed for mixing because of the high viscosity, and long tubular reactors with low cross-sectional area are needed for heat exchange. [Pg.397]

The major use of vinylpyrrohdinone is as a monomer in manufacture of poly(vinylpyrrohdinone) (PVP) homopolymer and in various copolymers, where it frequendy imparts hydrophilic properties. When PVP was first produced, its principal use was as a blood plasma substitute and extender, a use no longer sanctioned. These polymers are used in pharmaceutical and cosmetic appHcations, soft contact lenses, and viscosity index improvers. The monomer serves as a component in radiation-cured polymer compositions, serving as a reactive diluent that reduces viscosity and increases cross-linking rates (see... [Pg.114]

Tire Ya.rns, A method to iacrease the strength of viscose yam from the 0.2 N /tex (2.2 gf/den) standard to levels needed ia tires was first patented by Courtaulds ia 1935 (18). By raising the ziac concentration ia the spia bath to 4% the thread could be stretched more by immersing it ia a hot dilute acid bath duting extension. Filament strengths iacreased to about 0.3 N/tex (3.3 gf/den), and the cross section became rounder, with a thicker skin than regular viscose. Pairs of these yams were capable of beiag twisted iato tire cords which outperformed traditional cotton cords. [Pg.349]

Permanent chemical crimp can be obtained by creating an asymmetric arrangement of the skin and the core parts of the fiber cross section. Skin cellulose is more highly ordered than core cellulose and shrinks more on drying. If, during filament formation in the spin bath, the skin can be forced to burst open to expose fresh viscose to the acid, a fiber with differing shrinkage potential from side-to-side is made, and crimp should be obtained (Fig. 5a). [Pg.349]


See other pages where Cross-viscosity is mentioned: [Pg.550]    [Pg.466]    [Pg.564]    [Pg.86]    [Pg.550]    [Pg.466]    [Pg.564]    [Pg.86]    [Pg.246]    [Pg.580]    [Pg.820]    [Pg.831]    [Pg.854]    [Pg.857]    [Pg.859]    [Pg.1609]    [Pg.2047]    [Pg.2603]    [Pg.189]    [Pg.142]    [Pg.151]    [Pg.622]    [Pg.315]    [Pg.321]    [Pg.140]    [Pg.141]    [Pg.191]    [Pg.202]    [Pg.234]    [Pg.312]    [Pg.23]    [Pg.49]    [Pg.325]    [Pg.344]    [Pg.344]    [Pg.348]    [Pg.349]    [Pg.379]    [Pg.405]    [Pg.373]    [Pg.435]   
See also in sourсe #XX -- [ Pg.550 ]




SEARCH



© 2024 chempedia.info