Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross transition metal catalysts supports

Aiming at easier workup conditions, immobilization of several transition metal catalysts, which show activity for the epoxidation of allylic alcohols, on polymer support has been investigated. For example, Suzuki and coworkers incorporated an oxo-vanadium ion into cross-linked polystyrene resins functionalized with iminodiacetic acid or diethylenetri-amine derivatives (Scheme 57), which afforded a heterogeneous catalyst that can promote... [Pg.391]

Besides the hitherto described dendritic effects, the main aspect of interest regarding the use of dendritic supports in catalysis is represented by the possibility of recovering the catalyst. It is clear from the contributions of many research groups that dendrimers are suitable supports for recyclable transition metal catalysts. Separation and/or recycle of the catalysts are possible with these functionalized dendrimers for example, separation results from precipitation of the dendrimer from the product liquid two-phase catalysis allows separation and recycling of the catalyst when the products and catalyst are concentrated in two immiscible liquid phases and immobilization of the dendrimer in an insoluble support (such as cross-linked polystyrene or silica) allows use of a fixed-bed reactor holding the catalyst and excluding it from the product stream. For dendritic catalysts separation with these traditional techniques, the function of the dendrimer is not always clear. In contrast, the large... [Pg.40]

Polycondensation pol5mers, like polyesters or polyamides, are obtained by condensation reactions of monomers, which entail elimination of small molecules (e.g. water or a hydrogen halide), usually under acid/ base catalysis conditions. Polyolefins and polyacrylates are typical polyaddition products, which can be obtained by radical, ionic and transition metal catalyzed polymerization. The process usually requires an initiator (a radical precursor, a salt, electromagnetic radiation) or a catalyst (a transition metal). Cross-linked polyaddition pol5mers have been almost exclusively used so far as catalytic supports, in academic research, with few exceptions (for examples of metal catalysts on polyamides see Ref. [95-98]). [Pg.209]

The alternative strategy for heterogenization has been pursued by Blechert and co-workers, for a polymer-supported olefin metathesis catalyst. A polymer-anchored carbene precursor was prepared by coupling an alkoxide to a cross-linked polystyrene Merrifield-type resin. Subsequently, the desired polymer-bound carbene complex was formed by thermolytically induced elimination of ferf-butanol while heating the precursor resin in the presence of the desired transition metal fragment (Scheme 8.30). [Pg.365]

Covalent bonding refers to the materials made in which the transition metal is bonded directly to the resin through an organometallic bond. Two different approaches can be used to covalently attach metal complexes to polymer supports (i) synthesis of appropriate functional monomers and their (co)polymerization to form catalytically active polymers (Scheme 11.1) or (ii) attachment of metal complexes to preformed functional polymer supports by chemical reactions. Following these approaches, both soluble and cross-linked chiral polymeric metal complexes can be prepared. An example of an organometallic tin catalyst suitable for transesterification was reported by workers at Rohm and Haas Company [3]. [Pg.310]

A review on the industrial applications of homogeneous catalysts is particularly welcome. The proceedings of recent symposia and a general text have been published in addition to reviews on metal cluster catalysts, activation of saturated hydrocarbons by metal complexes in solution, catalysis by arene Group-VIB tricarbonyls, titanocene-catalysed reactions ofalkenes, transition-metal hydrides in catalysis, the mechanisms of the catalytic cyclization of aliphatic, hydrocarbons, asymmetric hydrosilylation and asymmetric synthesis. A n.m.r. study of the conformations of chelated Diop and a MO study of organo-metallic migration reactions are also of interest. Polymer supported catalysts have been reviewed and the relationship between cross-linking of the polymer and catalytic activity has been discussed. ... [Pg.400]

Polyoxometalates (POMs) are transition metal oxygen clusters with well-defined atomic coordination structures. POMs are used as functional nano-colloidal materials and also as supports for catalysts via ion-pair interactions due to their acidic properties. Combinations of chiral diamines and POM 225 effectively catalyze enamine-based aldol reactions. Less than 1 mol% of chiral amine loading is suf-ficientto catalyze the reaction (Table 28.10, entries 1 and 2) [114]. Highly diastereo-and enantioselective cross-aldol reactions of aldehydes are accomplished using chiral diamine-POM 226 under emulsion conditions (entries 3 and 4) [115]. Sul-fonated polystyrene or fluoropolymer Nafion NR50 are also good supports for the immobilization of primary-tertiary diamines. The catalyst 227 can be recovered by filtration and reused for at least four cycles with no loss of stereoselectivity (entries 5 and 6) [116]. [Pg.832]


See other pages where Cross transition metal catalysts supports is mentioned: [Pg.370]    [Pg.52]    [Pg.313]    [Pg.75]    [Pg.65]    [Pg.689]    [Pg.276]    [Pg.216]    [Pg.56]    [Pg.364]    [Pg.467]    [Pg.287]    [Pg.182]    [Pg.53]    [Pg.276]    [Pg.333]    [Pg.97]    [Pg.97]    [Pg.91]    [Pg.131]    [Pg.753]    [Pg.265]    [Pg.339]    [Pg.183]    [Pg.300]    [Pg.313]    [Pg.913]    [Pg.276]    [Pg.259]    [Pg.668]    [Pg.115]    [Pg.1167]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Supported metal catalysts

Transition catalyst

Transition metal catalysts supports

© 2024 chempedia.info