Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking tensile strength

Commercially produced elastic materials have a number of additives. Fillers, such as carbon black, increase tensile strength and elasticity by forming weak cross links between chains. This also makes a material stilfer and increases toughness. Plasticizers may be added to soften the material. Determining the effect of additives is generally done experimentally, although mesoscale methods have the potential to simulate this. [Pg.313]

During the vulcanization, the volatile species formed are by-products of the peroxide. Typical cure cycles are 3—8 min at 115—170°C, depending on the choice of peroxide. With most fluorosihcones (as well as other fluoroelastomers), a postcure of 4—24 h at 150—200°C is recommended to maximize long-term aging properties. This post-cure completes reactions of the side groups and results in an increased tensile strength, a higher cross-link density, and much lower compression set. [Pg.400]

Desirable properties of elastomers include elasticity, abrasion resistance, tensile strength, elongation, modulus, and processibiUty. These properties are related to and dependent on the average molecular weight and mol wt distribution, polymer macro- and microstmcture, branching, gel (cross-linking), and... [Pg.493]

Although the elastomer phase is essentially in particulate form, the tensile strength of the blend can be increased five-fold by increasing the cross-link density from zero to that conventionally used in vulcanisation processes, whilst tension set may be reduced by over two-thirds. Since the thermoplastic polyolefin phase may be completely extracted by boiling decalin or xylene, there is apparently no covalent chemical bonding of elastomer and thermoplastic phases. [Pg.303]

The resins act as a plasticiser during processing but they cross-link while the rubber is vulcanising to give a harder product with improved oxidation resistance, oil resistance and tensile strength. The addition of sufficient resin will lead to an ebonite-like product. [Pg.661]

Vulcanization changes the physical properties of rubbers. It increases viscosity, hardness, modulus, tensile strength, abrasion resistance, and decreases elongation at break, compression set and solubility in solvents. All those changes, except tensile strength, are proportional to the degree of cross-linking (number of crosslinks) in the rubber network. On the other hand, rubbers differ in their ease of vulcanization. Since cross-links form next to carbon-carbon double bonds. [Pg.638]

Mechanical properties, such as elastic modulus and yield point, that depend on crystallinity per se are not seriously affected by low to moderate doses of ionizing radiation. On the other hand, those mechanical properties that are sensitive to interlamellar activity are most dramatically affected by the low to moderate radiation doses. This is seen in the ultimate tensile strength and elongation at failure of the polyolefins. It is also reflected in the large change in melt index between 0 and 18 Mrad, which indicates formation of cross-links that increase with increasing... [Pg.98]

Elastomeric composition for dynamic application of cross-linked E-plastomers has been made with filer-reinforced systems which contain a metal salt (typically zinc) of an alpha, beta unsaturated acid. These additives improve the tensile and tear strength of the elastomer and are cured with a peroxide cure system. These cross-linked articles are suitable for dynamic loading applications such as belting, including power transmission and flat belting. [Pg.172]

Similar blends have been made by cross-linking the E-plastomer with peroxides. This process suffers from an inherent degradation of the iPP by peroxide. In a representative formulation, a mixture of 60 parts of E-plastomer (octene commoner), 15 parts maleated (0.6%) iPP, 25 parts of EPDM, 10 parts of paraffinic plasticizer, 5 parts of dicumyl peroxide, and 1 part of stabilizer was treated at 170°C for 5 min to give a cross-linked blend with Shore A hardness 66, tensile strength 5.5 MPa, and elongation 190%. Similar blends have been made with the incorporation of a limited amount of a SEES polymer to act as a compatibilizer between the E-plastomer and the iPP. [Pg.177]


See other pages where Cross-linking tensile strength is mentioned: [Pg.68]    [Pg.347]    [Pg.282]    [Pg.488]    [Pg.488]    [Pg.73]    [Pg.429]    [Pg.306]    [Pg.317]    [Pg.190]    [Pg.424]    [Pg.235]    [Pg.241]    [Pg.269]    [Pg.269]    [Pg.272]    [Pg.288]    [Pg.58]    [Pg.490]    [Pg.350]    [Pg.184]    [Pg.532]    [Pg.20]    [Pg.225]    [Pg.229]    [Pg.293]    [Pg.374]    [Pg.784]    [Pg.787]    [Pg.823]    [Pg.835]    [Pg.639]    [Pg.1115]    [Pg.417]    [Pg.647]    [Pg.277]    [Pg.98]    [Pg.921]    [Pg.182]    [Pg.114]    [Pg.171]    [Pg.172]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 ]




SEARCH



Tensil strength

Tensile Strength Data from Electron Beam Cross-Linked Polybutadiene and Its Copolymers

© 2024 chempedia.info