Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Creep strain recovery ratio

Table 6.1 summarizes the experimental details together with symbols (designations) including values for applied load, load time, strain, strain rate and the creep-strain recovery ratio, R r. [Pg.424]

Creep describes time-dependent permanent deformation of materials resulting from constant structural stress. The creep of polymers can be divided into two main stages primary creep and steady-state creep. The creep strain rate decreases with time in the primary creep and is constant in the steady-state creep. Strain recovery occurs with the removal of external load after a creep time. Therefore, the total strain (e) consists of three separate parts el, e2, and e3. The el and e2 are the immediate elastic deformation and delayed elastic deformation, respectively. The e3 is the Newtonian flow. It was found that the el and e2 decreased with increasing clay contenf indicating lower creep recovery with the addition of C20A. The creep compHance J, the ratio of strain and applied load, can be expressed as... [Pg.203]

The loss of modulus caused by crazing becomes less pronounced as the draw ratio is increased, especially in tests carried out at lower stress levels. This observation supports earlier conclusions drawn from creep studies on other rubber-toughened plastics (6) if the specimen can reach a strain of 5% largely or entirely by shear mechanisms, the loss of modulus resulting from the creep and recovery program is quite small if, on the other hand, crazing is the dominant mechanism, the loss in modulus is large. [Pg.191]

With constant stress, G t) = Gy, where creep strain y t) is constant [y(t) = Gq/G] for a Hookean solid. It would be directly proportional to time for a Newtonian liquid [(y(0 = Go/r])t]. Here t is the initial time at which recovery of the viscoelastic material begins. For a viscoelastic fluid, when stress is applied, there is a period of creep that is followed by a period of recovery. For such liquids, strains return back toward zero and finally reach an equilibrium at some smaller total strain. For the viscoelastic liquid in the creep phase, the strain starts at some small value, but builds up rapidly at a decreasing rate until a steady state is reached. After that the strain simply increases linearly with time. During this linear range, the ratio of shear strain to shear stress is a function of time alone. This is shear creep compliance, J t) The equation of shear creep compliance can be written as follows ... [Pg.31]

Two steady states are recognized for the long-time creep compliance of materials. Either the sample is a solid and the compliance becomes time independent or the sample is a liquid and the compliance becomes linear in -time. Once steady state has been achieved in creep, the stress can be removed (a = 0) and the elastic recoil, called creep recovery, can be measured. Recovery strain is defined as 7r(0 s 7(0) — 7(0 for t > 0, where t is defined to be zero at the start of recovery. The recoverable compliance is defined as the ratio of the time-dependent recovery strain 7r(0 and the initially applied stress a, where both 7r and t are now defined to be zero at the start of recovery ... [Pg.290]

In the course of tensile creep, the form of the time dependence of strain (as expressed by the stretch ratio X, for example) depends on the magnitude of tensile stress at high stresses." " Recovery is considerably more rapid than would be predicted from the Boltzmann superposition principle, as illustrated in Fig. 13-23 for polyisobutylene of high molecular weight. " The course of recovery is predicted successfully by the theory of Bernstein, Kearsley, and Zapas. 2 - 22 -pije stress-dependent recoverable steady-state compliance D = which is equal to Z) at low stresses, decreases with increasing Ot- This effect, moderate when the tensile strain e is defined as X — 1, is more pronounced when it is replaced by the Hencky strain, defined as In X. The stress dependence of steady-state compliance in shear will be discussed in Chapter 17. The reader is referred to the review by Petrie" for more details. [Pg.400]


See other pages where Creep strain recovery ratio is mentioned: [Pg.92]    [Pg.61]    [Pg.223]    [Pg.220]    [Pg.351]    [Pg.115]    [Pg.43]    [Pg.43]    [Pg.331]    [Pg.802]    [Pg.508]    [Pg.754]    [Pg.573]    [Pg.385]    [Pg.404]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Creep recovery

Creep strain recovery

Strain ratio

© 2024 chempedia.info