Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalent bonding electron model

Molecular mechanics force fields rest on four fundamental principles. The first principle is derived from the Bom-Oppenheimer approximation. Electrons have much lower mass than nuclei and move at much greater velocity. The velocity is sufficiently different that the nuclei can be considered stationary on a relative scale. In effect, the electronic and nuclear motions are uncoupled, and they can be treated separately. Unlike quantum mechanics, which is involved in determining the probability of electron distribution, molecular mechanics focuses instead on the location of the nuclei. Based on both theory and experiment, a set of equations are used to account for the electronic-nuclear attraction, nuclear-nuclear repulsion, and covalent bonding. Electrons are not directly taken into account, but they are considered indirectly or implicitly through the use of potential energy equations. This approach creates a mathematical model of molecular structures which is intuitively clear and readily available for fast computations. The set of equations and constants is defined as the force... [Pg.39]

By comparing the resonance frequency Eq.(ll) and the phonon vibration frequency Eq.(12), we see that they are almost the same, 0.3 0.4 x 1014 s 1. This affirms the possibility of a spin-paired covalent-bonded electronic charge transfer. For vibrations in a linear crystal there are certainly low frequency acoustic vibrations in addition to the high frequency anti-symmetric vibrations which correspond to optical modes. Thus, there are other possibilities for refinement. In spite of the crudeness of the model, this sample calculation also gives a reasonable transition temperature, TR-B of 145 °K, as well as a reasonable cooperative electronic resonance and phonon vibration effect, to v. Consequently, it is shown that the possible existence of a COVALON conduction as suggested here is reasonable and lays a foundation for completing the story of superconductivity as described in the following. [Pg.77]

The A1 atom is surrounded by three covalent bond electron pairs and two dative bond electron pairs. According to the VSEPR model the most stable arrangement of five electron pairs in the valence shell of the central atom is trigonal bipyramidal, and this is indeed the structure observed. The VSEPR model may also be used to rationalize the observation that the donor atoms occupy axial positions an axial bond electron pair is repelled by three (equatorial) bond pairs, while an equatorial bond electron is repelled by two axial bond pairs across the same angle. Since a covalent bond electron pair requires more space at the aluminum atom than a dative bond electron pair, the covalently bonded atoms occupy the equatorial positions. [Pg.249]

Simple metals like alkalis, or ones with only s and p valence electrons, can often be described by a free electron gas model, whereas transition metals and rare earth metals which have d and f valence electrons camiot. Transition metal and rare earth metals do not have energy band structures which resemble free electron models. The fonned bonds from d and f states often have some strong covalent character. This character strongly modulates the free-electron-like bands. [Pg.129]

How does electron sharing lead to bonding between atoms Two models have been developed to describe covalent bonding valence bond theory and molecular orbital theory. Each model has its strengths and weaknesses, and chemists tend... [Pg.10]

We said in Section 1.5 that chemists use two models for describing covalent bonds valence bond theory and molecular orbital theory. Having now seen the valence bond approach, which uses hybrid atomic orbitals to account for geometry and assumes the overlap of atomic orbitals to account for electron sharing, let s look briefly at the molecular orbital approach to bonding. We ll return to the topic in Chapters 14 and 15 for a more in-depth discussion. [Pg.21]

We saw in the last chapter how covalent bonds between atoms are described, and we looked at the valence bond model, which uses hybrid orbitals to account for the observed shapes of organic molecules. Before going on to a systematic study of organic chemistry, however, we still need to review a few fundamental topics. In particular, we need to look more closely at how electrons are distributed in covalent bonds and at some of the consequences that arise when the electrons in a bond are not shared equally between atoms. [Pg.35]

According to this model, a covalent bond consists of a pair of electrons of opposed spin within an orbital. For example, a hydrogen atom forms a covalent bond by accepting an electron from another atom to complete its Is orbital. Using orbital diagrams, we could write... [Pg.185]

According to this model, it would seem that for an atom to form a covalent bond, it must have an unpaired electron. Indeed, the number of bonds formed by an atom should be determined by its number of unpaired electrons. Because hydrogen has an unpaired electron, an H atom should form one covalent bond, as indeed it does. The same holds for the F atom, which forms only one bond. The noble-gas atoms He and Ne, which have no unpaired electrons, should not form bonds at all they don t... [Pg.186]

Until about 20 years ago, the valence bond model discussed in Chapter 7 was widely used to explain electronic structure and bonding in complex ions. It assumed that lone pairs of electrons were contributed by ligands to form covalent bonds with metal atoms. This model had two major deficiencies. It could not easily explain the magnetic properties of complex ions. [Pg.416]

Hall, C. M., 96, 373 Halogens atom models, 98 bond energies, 355 chemistry, 98 color, 352 covalent bonds, 97 covalent radius, 355 electron configuration, 352 ionization energies, 353 oxyacids, 358... [Pg.459]

Read the entire laboratory activity. Form a hypothesis about how to show sharing of electrons in a covalent bond in an illustration and in a model and how the type of bond is determined. Record your hypothesis on page 71. [Pg.70]

Frequently, directionality is a property attributed to the covalent bond which supposedly is taken to be the cause of the resulting structures. However, as the success of the valence electron pair repulsion theory shows, there exists no need to assume any orbitals directed a priori. The concept of directed orbitals is based on calculations in which hybridization is used as a mathematical aid. The popular use of hybridization models occasionally has created the false impression that hybridization is some kind of process occurring prior to bond formation and committing stereochemistry. [Pg.39]

There are also molecules that are exceptions to the octet rule because one of the atoms has fewer, rather than more than, eight electrons in its valence shell in the Lewis structure (Figure 1.19). These molecules are formed by the elements on the left-hand side of the periodic table that have only one, two, or three electrons in their valence shells and cannot therefore attain an octet by using each of their electrons to form a covalent bond. The molecules LiF, BeCl2, BF3, and AIC13 would be examples. However, as we have seen and as we will discuss in detail in Chapters 8 and 9, these molecules are predominately ionic. In terms of a fully ionic model, each atom has a completed shell, and the anions obey the octet rule. Only if they are regarded as covalent can they be considered to be exceptions to the octet rule. Covalent descriptions of the bonding in BF3 and related molecules have therefore... [Pg.22]

The differences just outlined cannot be explained by means of a classical mechanical model. However, they can be explained by considering chemical bonding. In particular, hardness depends in covalent crystals on the fact that the valence (bonding) electrons are highly localized as shown by electron-diffraction studies which can provide maps of electron densities (bonds). [Pg.72]


See other pages where Covalent bonding electron model is mentioned: [Pg.249]    [Pg.554]    [Pg.62]    [Pg.78]    [Pg.131]    [Pg.243]    [Pg.109]    [Pg.54]    [Pg.270]    [Pg.275]    [Pg.277]    [Pg.270]    [Pg.278]    [Pg.2222]    [Pg.470]    [Pg.440]    [Pg.168]    [Pg.696]    [Pg.70]    [Pg.230]    [Pg.80]    [Pg.184]    [Pg.216]    [Pg.89]    [Pg.1219]    [Pg.45]    [Pg.229]    [Pg.277]    [Pg.259]    [Pg.91]    [Pg.125]    [Pg.411]    [Pg.298]   


SEARCH



Bonded models

Covalent bonding modelling

Covalent bonding models

Covalent bonds bonding electrons

Covalent bonds electron model

Covalent model

Electron covalent models

Electronic models

Models, bonding

© 2024 chempedia.info