Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlation spectroscopy, COSY small couplings

Correlated spectroscopy (COSY) was among the first two-dimensional (2D) NMR experiment realized [447, 448] and it is still among the most useful NMR experiments. COSY generates cross peaks in the 2D spectrum at the intersection of resonances of coupled spins (Fig. 14.48). In proteins cross peaks are observed for gem-inal, i.e. over two bonds, and vicinal, i.e. over three bonds, protons and in small peptides also couplings over four bonds may be detected. Thus the COSY spectrum allows the identification of spin systems for the assignment. However, apart from peptides, the overlap and degeneracy in chemical shifts is likely to prevent one from obtaining entire spin systems exclusively from the COSY spectrum additional experiments are required. [Pg.703]

Total correlation spectroscopy (TOCSY) is similar to the COSY sequence in that it allows observation of contiguous spin systems [35]. However, the TOCSY experiment additionally will allow observation of up to about six coupled spins simultaneously (contiguous spin system). The basic sequence is similar to the COSY sequence with the exception of the last pulse, which is a spin-lock pulse train. The spin lock can be thought of as a number of homonuclear spin echoes placed very close to one another. The number of spin echoes is dependent on the amount of time one wants to apply the spin lock (typically 60 msec for small molecules). This sequence is extremely useful in the identification of spin systems. The TOCSY sequence can also be coupled to a hetero-nuclear correlation experiment as described later in this chapter. [Pg.287]

In the H- H COSY (correlation spectroscopy) experiment (41), magnetization is transferred via the J-coupling and shows correlations between protons three bonds apart. The cross peak usually shows a characteristic antiphase-square pattern, but it may be split even more by additional passive couplings that lead to spectral crowding and loss of intensity. For small molecules. [Pg.1274]

Multidimensional NMR spectra are not restricted to cases where the separate frequency axes encode signals from different nuclear types. Indeed, much of the early work on the development of 2D NMR was performed on cases where both axes involved chemipal shifts. The main value in such spectra comes from the information content in cross peaks between pairs of protons. In COSY-type spectra (COSY = Correlation SpectroscopY) cross peaks occur only between protons that are scalar coupled (i.e., within 2 or 3 bonds) to each other, whereas in NOESY (NOE Spectroscopy) spectra cross peaks occur for protons that are physically close in space (<5 A apart). A combination of these two types of 2D spectra may be used to assign the NMR signals of small proteins and provides sufficient information on internuclear distances to calculate three-dimensional structures. Figure 12.3 includes a panel showing the COSY spectrum of cyclosporin and highlights the relationships between ID H-NMR spectra and corresponding 2D homonuclear (COSY) and heteronuclear (HSQC) spectra. [Pg.512]

Traditionally, homonuclear 2D double quantum filtered correlation spectroscopy (DQF-COSY) and total correlated spectroscopy (TOCSY) spectra are valuable in the identification of resonances of individual monosaccharide units. In the presence of small couplings, through space connectivities detected by NOESY/ROESY (nuclear Overhauser effect spectroscopy/ rotational nuclear Overhauser effect spectroscopy) experiments are also useful in completing the resonance assignment. When the H NMR spectra of complex oligosaccharides are too crowded to fully elucidate the structure by homonuclear correlation methods, it is efficient to use 2D heteronuclear correlation methods, such as heteronuclear single quantum correlation... [Pg.198]


See other pages where Correlation spectroscopy, COSY small couplings is mentioned: [Pg.184]    [Pg.237]    [Pg.265]    [Pg.569]    [Pg.406]    [Pg.149]    [Pg.305]    [Pg.33]    [Pg.6225]    [Pg.1274]    [Pg.195]    [Pg.33]    [Pg.195]    [Pg.199]    [Pg.84]    [Pg.33]    [Pg.6224]    [Pg.36]    [Pg.188]    [Pg.33]    [Pg.133]    [Pg.866]    [Pg.177]    [Pg.741]    [Pg.329]    [Pg.7]    [Pg.99]    [Pg.538]    [Pg.284]    [Pg.76]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



COSY

COSY spectroscopy

Correlated spectroscopy

Correlation coupling

Correlation spectroscopy

© 2024 chempedia.info