Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlation function liquids

Unlike the solid state, the liquid state cannot be characterized by a static description. In a liquid, bonds break and refomi continuously as a fiinction of time. The quantum states in the liquid are similar to those in amorphous solids in the sense that the system is also disordered. The liquid state can be quantified only by considering some ensemble averaging and using statistical measures. For example, consider an elemental liquid. Just as for amorphous solids, one can ask what is the distribution of atoms at a given distance from a reference atom on average, i.e. the radial distribution function or the pair correlation function can also be defined for a liquid. In scattering experiments on liquids, a structure factor is measured. The radial distribution fiinction, g r), is related to the stnicture factor, S q), by... [Pg.132]

The structure of a fluid is characterized by the spatial and orientational correlations between atoms and molecules detemiiued through x-ray and neutron diffraction experiments. Examples are the atomic pair correlation fiinctions (g, g. . ) in liquid water. An important feature of these correlation functions is that... [Pg.437]

Hemmer P C 1964 On van der Waals theory of vapor-liquid equilibrium IV. The pair correlation function and equation of state for long-range forces J. Math. Phys. 5 75... [Pg.554]

Cao J and Voth G A 1995 A theory for time correlation functions in liquids J. Chem. Phys. 103 4211... [Pg.897]

Hwang L-P and Freed J H 1975 Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids J. Chem. Rhys. 63 4017-25... [Pg.1516]

VER in liquid O 2 is far too slow to be studied directly by nonequilibrium simulations. The force-correlation function, equation (C3.5.2), was computed from an equilibrium simulation of rigid O2. The VER rate constant given in equation (C3.5.3) is proportional to the Fourier transfonn of the force-correlation function at the Oj frequency. Fiowever, there are two significant practical difficulties. First, the Fourier transfonn, denoted [Pg.3041]

Figure C3.5.6. The computed Fourier transfonn at frequency co, of tire classical mechanical force-force correlation function for liquid O2 at 70 K from [M]- The VER rate is proportional to the value of ( " at tire O2... Figure C3.5.6. The computed Fourier transfonn at frequency co, of tire classical mechanical force-force correlation function for liquid O2 at 70 K from [M]- The VER rate is proportional to the value of ( " at tire O2...
All of these time correlation functions contain time dependences that arise from rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole P-avejv (t), the vibrational transition dipole itrans (t) or the electronic transition dipole ii f(Re,t)) and the latter two also contain oscillatory time dependences (i.e., exp(icofv,ivt) or exp(icOfvjvt + iAEi ft/h)) that arise from vibrational or electronic-vibrational energy level differences. In the treatments of the following sections, consideration is given to the rotational contributions under circumstances that characterize, for example, dilute gaseous samples where the collision frequency is low and liquid-phase samples where rotational motion is better described in terms of diffusional motion. [Pg.427]

However, it is known that the direct correlation functions have an exact long-range asymptotic form, arising due to intramolecular correlations in clusters formed via the association mechanism. This asymptotics is not included in the Percus-Yevick approximation. Other common liquid state approximations also do not provide correct asymptotic behavior of Ca ir). [Pg.179]

The structure of the chapter is as follows. First, we start with a brief introduction of the important theoretical developments and relevant interesting experimental observations. In Sec. 2 we present fundamental relations of the liquid-state replica methodology. These include the definitions of the partition function and averaged grand thermodynamic potential, the fluctuations in the system and the correlation functions. In the second part of... [Pg.293]

Dynamic information such as reorientational correlation functions and diffusion constants for the ions can readily be obtained. Collective properties such as viscosity can also be calculated in principle, but it is difficult to obtain accurate results in reasonable simulation times. Single-particle properties such as diffusion constants can be determined more easily from simulations. Figure 4.3-4 shows the mean square displacements of cations and anions in dimethylimidazolium chloride at 400 K. The rapid rise at short times is due to rattling of the ions in the cages of neighbors. The amplitude of this motion is about 0.5 A. After a few picoseconds the mean square displacement in all three directions is a linear function of time and the slope of this portion of the curve gives the diffusion constant. These diffusion constants are about a factor of 10 lower than those in normal molecular liquids at room temperature. [Pg.160]

Figure. 3 (a) Partial pair correlation function.s gij(B.) in liquid K-Sb alloys, (b) Total, partial, and local electronic densities of states in liquid Ko.soSbo.so- Cf. text. [Pg.79]

Although long-time Debye relaxation proceeds exponentially, short-time deviations are detectable which represent inertial effects (free rotation between collisions) as well as interparticle interaction during collisions. In Debye s limit the spectra have already collapsed and their Lorentzian centre has a width proportional to the rotational diffusion coefficient. In fact this result is model-independent. Only shape analysis of the far wings can discriminate between different models of molecular reorientation and explain the high-frequency pecularities of IR and FIR spectra (like Poley absorption). In the conclusion of Chapter 2 we attract the readers attention to the solution of the inverse problem which is the extraction of the angular momentum correlation function from optical spectra of liquids. [Pg.6]

Judging by these results the angular momentum relaxation in a dense medium has the form of damped oscillations of frequency jRo = (Rctc/to)i and decay decrement 1/(2tc). This conclusion is quantitatively verified by computer experiments [45, 54, 55]. Most of them were concerned with calculations of the autocorrelation function of the translational velocity v(t). However the relation between v(t) and the force F t) acting during collisions is the same as that between e> = J/I and M. Therefore, the results are qualitatively similar. In Fig. 1.8 we show the correlation functions of the velocity and force for the liquid state density. Oscillations are clearly seen, which point to a regular character of collisions and non-Markovian nature of velocity changes. [Pg.35]

Fig. 1.14. Comparison of the MD calculations of the correlation functions of the translational velocity and angular momentum in liquid nitrogen [65]. The time is in units of 10-13 s. Fig. 1.14. Comparison of the MD calculations of the correlation functions of the translational velocity and angular momentum in liquid nitrogen [65]. The time is in units of 10-13 s.
Of course, the effect of excluded volume is opposite and greatly exceeds that shown in Fig. 1.10, which is produced by uncorrelated collective interaction. Unfortunately, neither of them results in sign-alternating behaviour of angular or translational momentum correlation functions. This does not have a simple explanation either in gas-like or solid-like models of liquids. As is clearly seen from MD calculations, even in... [Pg.49]

Of course, knowledge of the entire spectrum does provide more information. If the shape of the wings of G (co) is established correctly, then not only the value of tj but also angular momentum correlation function Kj(t) may be determined. Thus, in order to obtain full information from the optical spectra of liquids, it is necessary to use their periphery as well as the central Lorentzian part of the spectrum. In terms of correlation functions this means that the initial non-exponential relaxation, which characterizes the system s behaviour during free rotation, is of no less importance than its long-time exponential behaviour. Therefore, we pay special attention to how dynamic effects may be taken into account in the theory of orientational relaxation. [Pg.63]

Chandler D. Translational and rotational diffusion in liquids. I. Translational single-particle correlation functions. J. Chem. Phys. 60, 3500-507, (1974). Translational and rotational diffusion in liquids. II. Orientational single-particle correlation functions. J. Chem. Phys. 60, 3508-12 (1974). [Pg.282]

Zatsepin V. M. To experimental determination of angular momentum correlation function in liquids, Ukrainian Phys. J. 21, 48-52 (1976). [Pg.284]

Zatovskaya A. A., Zatovski A. V. Long-time asymptotics of the correlation functions of the molecular rotation in liquids, Ukrainian Phys. J. 19, 1180-4 (1974). [Pg.284]

Dill J. F., Litovitz T. A., Bucaro J. A. Molecular reorientation in liquids by Rayleigh scattering pressure dependence of rotational correlation functions, J. Chem. Phys. 62, 3839-50 (1975). [Pg.285]

Kluk E., Monkos K., Pasterny K., Zerda T. A means to obtain angular velocity correlation functions from angular position correlation functions of molecules in liquid. Part I. General discussion and its application to linear and spherical top molecules, Acta Physica Polonica A 56, 109-16 (1979). [Pg.285]

Here the vector rj represents the centre of mass position, and D is usually averaged over several time origins to to improve statistics. Values for D can be resolved parallel and perpendicular to the director to give two components (D//, Dj ), and actual values are summarised for a range of studies in Table 3 of [45]. Most studies have found diffusion coefficients in the 10 m s range with the ratio D///Dj between 1.59 and 3.73 for calamitic liquid crystals. Yakovenko and co-workers have carried out a detailed study of the reorientational motion in the molecule PCH5 [101]. Their results show that conformational molecular flexibility plays an important role in the dynamics of the molecule. They also show that cage models can be used to fit the reorientational correlation functions of the molecule. [Pg.59]


See other pages where Correlation function liquids is mentioned: [Pg.595]    [Pg.434]    [Pg.144]    [Pg.418]    [Pg.419]    [Pg.423]    [Pg.431]    [Pg.438]    [Pg.305]    [Pg.350]    [Pg.755]    [Pg.132]    [Pg.79]    [Pg.1]    [Pg.45]    [Pg.46]    [Pg.48]    [Pg.114]    [Pg.227]    [Pg.282]    [Pg.33]    [Pg.101]    [Pg.241]    [Pg.243]    [Pg.246]    [Pg.259]   
See also in sourсe #XX -- [ Pg.457 , Pg.460 , Pg.461 ]




SEARCH



Correlation function supercooled liquids and glasses

Frequency-time correlation function molecular liquids

Inhomogeneity correlation function, liquid-solid

Liquid correlations

Liquid-like pair correlation function

Liquids pair correlation function, observable

Pair correlation function in liquids

Pair correlation function liquid structure simulation

Time correlation function, supercooled liquids

© 2024 chempedia.info