Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coppers asymmetric

Direct Blue 218 had reported sales of 623 t valued at 4.4 million ia 1987. It is produced from Direct Blue 15 (76) by metallizing and elimination of methyl groups from the methoxide to form the copper complex. Direct Blue 15 (76) is prepared by coupling o-dianisidine [119-90-4] to two moles of H-acid (4-amiQO-5-hydroxy-2,7-naphthalenedisulfonic acid) under alkaline pH conditions. Other important direct blues iaclude Direct Blue 80 (74), (9-dianisidine coupled to two moles of R-acid (3-hydroxy-2,7-naphthalenedisulfonic acid [148-75-4]) followed by metallizing to form a bis copper complex, and Direct Blue 22 (77), an asymmetrical disazo dye, prepared by coupling o-dianisidine to Chicago acid [82-47-3] and 2-naphthol. Direct Blue 75 (78) is an example of a trisazo dye represented as metanilic acid — 1,6-Q.eve s acid — 1,6-Q.eve s acid — (alb) Ai-phenyl J-acid. [Pg.443]

In addition to primary features from copper in Eig. 2.7 are small photoelectron peaks at 955 and 1204 eV kinetic energies, arising from the oxygen and carbon Is levels, respectively, because of the presence of some contamination on the surface. Secondary features are X-ray satellite and ghost lines, surface and bulk plasmon energy loss features, shake-up lines, multiplet splitting, shake-off lines, and asymmetries because of asymmetric core levels [2.6]. [Pg.16]

Meyers has also reported the use of chiral oxazolines in asymmetric copper-catalyzed Ullmann coupling reactions. For example, treatment of bromooxazoline 50 with activated copper powder in refluxing DMF afforded binaphthyl oxazoline 51 as a 93 7 mixture of atropisomers diastereomerically pure material was obtained in 57% yield after a single recrystallization. Reductive cleavage of the oxazoline groups as described above afforded diol 52 in 88% yield. This methodology has also been applied to the synthesis of biaryl derivatives. [Pg.243]

The axially chiral natural product mastigophorene A (70) was synthesized via a copper-catalyzed asymmetric homocoupling of bromooxazoline 68. Treatment of 68 with activated copper in DMF afforded 69 in 85% yield as a 3 1 mixture of atropisomers. The major atropisomer was converted into mastigophorene A (70) the minor regioisomer was transformed into the atropisomeric natural product mastigophorene... [Pg.245]

A great advantage of catalyst 24b compared with other chiral Lewis acids is that it tolerates the presence of ester, amine, and thioether functionalities. Dienes substituted at the 1-position by alkyl, aryl, oxygen, nitrogen, or sulfur all participate effectively in the present asymmetric Diels-Alder reaction, giving adducts in over 90% ee. The reaction of l-acetoxy-3-methylbutadiene and acryloyloxazolidinone catalyzed by copper reagent 24b, affords the cycloadduct in 98% ee. The first total synthesis of ewt-J -tetrahydrocannabinol was achieved using the functionalized cycloadduct obtained [23, 33e] (Scheme 1.39). [Pg.29]

Although furan is usually a poor diene in the Diels-Alder reaction, the chiral copper reagent 24b promotes its asymmetric addition to acryloyloxazolidinone to afford the 7-oxabicyclo[2.2.1]hept-2-ene derivative in high optical purity (Scheme 1.40). Because a retro-Diels-Alder reaction occurs above -20 °C, the reaction must be performed at low temperature (-78 °C) to obtain a high optical yield. The bicy-... [Pg.29]

Since Evans s initial report, several chiral Lewis acids with copper as the central metal have been reported. Davies et al. and Ghosh et al. independently developed a bis(oxazoline) ligand prepared from aminoindanol, and applied the copper complex of this ligand to the asymmetric Diels-Alder reaction. Davies varied the link between the two oxazolines and found that cyclopropyl is the best connector (see catalyst 26), giving the cycloadduct of acryloyloxazolidinone and cyclopentadiene in high optical purity (98.4% ee) [35] (Scheme 1.45). Ghosh et al., on the other hand, obtained the same cycloadduct in 99% ee by the use of unsubstituted ligand (see catalyst 27) [36] (Scheme 1.46, Table 1.19). [Pg.32]

Catalytic, enantioselective cyclopropanation enjoys the unique distinction of being the first example of asymmetric catalysis with a transition metal complex. The landmark 1966 report by Nozaki et al. [1] of decomposition of ethyl diazoacetate 3 with a chiral copper (II) salicylamine complex 1 (Scheme 3.1) in the presence of styrene gave birth to a field of endeavor which still today represents one of the major enterprises in chemistry. In view of the enormous growth in the field of asymmetric catalysis over the past four decades, it is somewhat ironic that significant advances in cyclopropanation have only emerged in the past ten years. [Pg.85]

From a historical perspective it is interesting to note that the Nozaki experiment was, in fact, a mechanistic probe to establish the intermediacy of a copper carbe-noid complex rather than an attempt to make enantiopure compounds for synthetic purposes. To achieve synthetically useful selectivities would require an extensive exploration of metals, ligands and reaction conditions along with a deeper understanding of the reaction mechanism. Modern methods for asymmetric cyclopropanation now encompass the use of countless metal complexes [2], but for the most part, the importance of diazoacetates as the carbenoid precursors still dominates the design of new catalytic systems. Highly effective catalysts developed in... [Pg.85]

Another rather peculiar asymmetric copper-catalyzed reaction was published some years earlier by Miura et al. [75]. The reaction is outlined in Scheme 6.31... [Pg.233]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Tlie constrLiction of carbocydic cotnpoutidi by ring-annulation procedures frequently plays a prominent role in total syntliesis. Tlie tolerance of various functional groups in tlie zinc reagents employed in copper-catalyzed asymmetric 1,4-additions fornis tlie basis for tliree novd catalytic enantioselective annulation metliods discussed bete. [Pg.252]

Copper-catalyzed asymmetric suhstituhon reactions can he classified into three major types ... [Pg.260]

Compared to tlie intensive and successfrd development of copper catalysts for asymmetric 1,4-addition reactions, discussed in Cbapt. 7, catalytic asymmetric al-lylic substitution reactions have been tlie subjects of only a few studies. Diflictilties arise because, in tlie asymmetric y substitution of unsymniettical allylic electto-pb des, tlie catalyst bas to be capable of controlling botli tegioselectivity and enan-tioselectivity. [Pg.272]

To investigate die effect of die substduents in die atenediiolaie structure, four diffetendy substituted copper arenediiolates, 25-28, were tested as catalysts, but very low ees were obtained in all cases [34]. Hie oxazolidine complex 26, developed by Pfaltz et al. [36] and used successfully in asymmetric conjugate adddion re-... [Pg.275]

Asymmetric ring-opening of saturated epoxides by organoctiprates has been studied, hut only low enantioselectivities f -c 1596 ee) have so far been obtained [49, 50]. Muller et al., for example, have reported that tlie reaction between cyclohexene oxide and MeMgBr, catalyzed by 1096 of a chiral Schiffhase copper complex, gave froiis-2-metliylcyclohexanol in 5096 yield and with 1096 ee [50]. [Pg.283]

The catalytic asymmetric cyclopropanation of an alkene, a reaction which was studied as early as 1966 by Nozaki and Noyori,63 is used in a commercial synthesis of ethyl (+)-(lS)-2,2-dimethylcyclo-propanecarboxylate (18) by the Sumitomo Chemical Company (see Scheme 5).64 In Aratani s Sumitomo Process, ethyl diazoacetate is decomposed in the presence of isobutene (16) and a catalytic amount of the dimeric chiral copper complex 17. Compound 18, produced in 92 % ee, is a key intermediate in Merck s commercial synthesis of cilastatin (19). The latter compound is a reversible... [Pg.346]

In 1995, aziridination with 1,3-dienes 10 by treatment with PhI=NTs 9 was developed (Scheme 2.4) [10] on the foundation of pioneering works by Jacobsen and Evans on copper-catalyzed asymmetric aziridination of isolated alkenes [11]. [Pg.39]

This 1,2-asymmetric induction has been attributed to stcric and stcrcoclectronic factors. Similarly, the cuprate additions to 4-alkylcyclopentenones l7 -19, and 4-alkylcyclohexcnones16 b-18 proceeded with very high trans diastereoselection. The copper iodide catalyzed addition of propylmagnesium bromide to 4-methyl-2-cyclohexenone gave a trans/cis ratio of 80 20, whereas the addition to 5-methyl-2-cyclohexenone produced a transjcis ratio of 93 72 3-Silyloxy system 3 gave the trans-adduct 4 on treatment with butylcopper-boron trifluoride reagent20. [Pg.899]

Phenyllithium and phenylcopper boron trifluoride yield different diastereomers of the reaction products, i.c., the sense of asymmetric induction is a function of the metal. These results are rationalized on the basis of antiperiplanar 6 and synperiplanar 8 reactive enoate conformations for additions of the copper and lithium reagents, respectively. [Pg.904]

An approach to the preparation of asymmetrically 1,2-disubstituted 1,2-diamines has been reported the zinc-copper-promoted reductive coupling of two different N-(4-substituted)phenyl aromatic imines, one bearing a 4-methoxy and the other a 4-chloro substituent, in the presence of either boron trifluoride or methyltrichlorosilane, gave a mixture of the three possible 1,2-diamines, where the mixed one predominated [31 ]. Low degrees of asymmetric induction were observed using 1-phenylethylamine, phenylglycinol and its 0-methyl ether, and several a-amino acid esters as the chiral auxiharies meanwhile the homocoupling process was not avoided (M.Shimizu, personal communication). [Pg.13]


See other pages where Coppers asymmetric is mentioned: [Pg.228]    [Pg.103]    [Pg.167]    [Pg.170]    [Pg.171]    [Pg.124]    [Pg.127]    [Pg.129]    [Pg.129]    [Pg.130]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.134]    [Pg.176]    [Pg.234]    [Pg.263]    [Pg.276]    [Pg.316]    [Pg.314]    [Pg.125]    [Pg.247]    [Pg.750]    [Pg.265]    [Pg.98]    [Pg.293]    [Pg.91]    [Pg.194]    [Pg.67]    [Pg.22]   


SEARCH



© 2024 chempedia.info