Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes stability constants

Figure 4. Copper complexation by a pond fulvic acid at pH 8 as a function of the logarithm of [Cu2+]. On the x-axis, complex stability constants and kinetic formation rate constants are given by assuming that the Eigen-Wilkens mechanism is valid at all [M]b/[L]t. The shaded zone represents the range of concentrations that are most often found in natural waters. The + represent experimental data for the complexation of Cu by a soil-derived fulvic acid at various metakligand ratios. An average line, based on equations (26) and (30) is employed to fit the experimental data. Data are from Shuman et al. [2,184]... Figure 4. Copper complexation by a pond fulvic acid at pH 8 as a function of the logarithm of [Cu2+]. On the x-axis, complex stability constants and kinetic formation rate constants are given by assuming that the Eigen-Wilkens mechanism is valid at all [M]b/[L]t. The shaded zone represents the range of concentrations that are most often found in natural waters. The + represent experimental data for the complexation of Cu by a soil-derived fulvic acid at various metakligand ratios. An average line, based on equations (26) and (30) is employed to fit the experimental data. Data are from Shuman et al. [2,184]...
Correlation of Potentials to Copper(ll) Complex Stability Constants... [Pg.1022]

In the presence of hydrogen sulfide produced by anaerobic bacterial activity, particularly sulfate reducers, conditions are created whereby sulfides of copper and zinc could be formed. The partition of these metals between the sulfide phase and the organic phase depends on the relation between the stability constants of the complexes and the solubility product of the sulfides of these metals. Elements with small solubility products of their sulfides and low stability constants of their chelates would be expected to go into the sulfide phase when hydrogen sulfide is present. Copper is typical of such elements. Chalcocite has a solubility product of about 10" ° and covellite about 10"44, whereas the most stable chelates of copper have stability constants of about 10" Consequently, copper could be expected to be accumulated as the sulfide. Zinc sulfide has a much larger solubility product however, the stability of its chelates is lower. From the fact that zinc appears to be completely associated with the inorganic fraction of coal, it can be assumed that the relation between the solubility product of any of its sulfides and its chelates favors formation of the sulfide. Iron could be expected to follow a similar pattern. [Pg.226]

Colouring matter (food) Complex stability constants Concanavelin A Copper... [Pg.348]

Amine-extraction equilibria can also be modeled by chemical-reaction equilibrium constants. Figure 8.3-3 indicates that cations such as iron(III), zinc, cobalt(lI) and copper(II) exhibit high distribution coefficients with chloride solutions, whereas nickel, iron(II), and manganese are not extracted to any great extent. The basis for the differences in distribution coefficients lies mainly in the tendency for the former group of cations to form chloride complexes. Stability constants for these complexes are available in the literature," and they can be used to develop quantitative phase-equilibrium models. [Pg.485]

For TIOA with hydrochloric acid the concentration-based equilibrium constant for salt formation" according to reaction (8.2-6) is 1.51 x 10 and the equilibrium constant for amine-hydrochloride salt dimerization" is 8.0 M Combination of these parameters and the ion-complex stability constants with experimental metal-distribution data allows determination of the equilibrium constants for reactions (8.2-5) or (8.2-7). This completes the description of the amine-metal extraction-phase equilibria. For cobalt(II) in acidic sodium chloride solutions the equilibrium constant" for reaction (8.2-7) with TIOA is 2.0 X 10 and that for coppeifll) is 370 The corresponding value for zinc" is 7.5 x 10 Af -In spile of these relative values, the order of selectivity of TIOA for extraction of the metals is Zn > Cu > Co because of the relative extent of chloride complex formation. For the same reason, zinc stripping is difficult in this system, and copper has a tendency to be reduced to cuprous, which also complexes and extracts extensively. [Pg.485]

Due to the anionic nature of rhamnolipids, they are able to remove metals from soil and ions such as cadmium, copper, lanthanum, lead and zinc due to their complexation ability [57-59], More information is required to establish the nature of the biosurfactant-metal complexes. Stability constants were established by an ion exchange resin technique [60], Cations of lowest to highest affinity for rhamnolipid were K+ < Mg + < Mn + < Ni " " < Co " < Ca2+ < Hg2+ < Fe + < Zn2+ < Cd2+ < Pb2+ < Cu2+ < M +. These affinities were approximately the same or higher than those with the organic acids, acetic, citric, fulvic and oxalic acids. This indicated the potential of the rhamnolipid for metal remediation. Molar ratios of the rhamnolipid to metal for selected metals were 2.31 for copper, 2.37 for lead, 1.91 for cadmium, 1.58 for zinc and 0.93 for nickel. Common soil cations, magnesium and potassium, had low molar ratios, 0.84 and 0.57, respectively. [Pg.288]

Copper(lI)/D-gaIacturonic acid complex stability constant was determined by potentiometry (y.Chem. uc.74(1997)1329). Various complexes, especially cationic and anionic Ag complexes are studied in ibid, 61(1984)729. [Pg.333]

Table 8-4. Stability constant data for copper(ii) and nickel(ii) ammine complexes. Table 8-4. Stability constant data for copper(ii) and nickel(ii) ammine complexes.
Mapsi et al. [16] reported the use of a potentiometric method for the determination of the stability constants of miconazole complexes with iron(II), iron(III), cobalt(II), nickel(II), copper(II), and zinc(II) ions. The interaction of miconazole with the ions was determined potentiometrically in methanol-water (90 10) at an ionic force of 0.16 and at 20 °C. The coordination number of iron, cobalt, and nickel was 6 copper and zinc show a coordination number of 4. The values of the respected log jSn of these complexes were calculated by an improved Scatchard (1949) method and they are in agreement with the Irving-Williams (1953) series of Fe2+ < Co2+ < Ni2 < Cu2+ < Zn2+. [Pg.38]

It has been recognized that sulfur donors aid the stabilization of Cu(i) in aqueous solution (Patterson Holm, 1975). In a substantial study, the Cu(ii)/Cu(i) potentials and self-exchange electron transfer rate constants have been investigated for a number of copper complexes of cyclic poly-thioether ligands (Rorabacher et al., 1983). In all cases, these macrocycles produced the expected stabilization of the Cu(i) ion in aqueous solution. For a range of macrocyclic S4-donor complexes of type... [Pg.216]

Copper may exist in particulate, colloidal, and dissolved forms in seawater. In the absence of organic ligands, or particulate and colloidal species, carbonate and hydroxide complexes account for more than 98% of the inorganic copper in seawater [285,286]. The Cu2+ concentration can be calculated if pH, ionic strength, and the necessary stability constants are known [215,265-267]. In most natural systems, the presence of organic materials and sorptive surfaces... [Pg.169]

Ruzic [278 ] considered the theoretical aspects of the direct titration of copper in seawaters and the information this technique provides regarding copper speciation. The method is based on a graph of the ratio between the free and bound metal concentration versus the free metal concentration. The application of this method, which is based on a 1 1 complex formation model, is discussed with respect to trace metal speciation in natural waters. Procedures for interpretation of experimental results are proposed for those cases in which two types of complexes with different conditional stability constants are formed, or om which the metal is adsorbed on colloidal particles. The advantages of the method in comparison with earlier methods are presented theoretically and illustrated with some experiments on copper (II) in seawater. The limitations of the method are also discussed. [Pg.170]

Metal-complex stability is also related to the basic strength of the ligand entity. For a series of 1 2 complexes of the bidentate naphthylazophenol ligand (5.64) with copper(II) ion, the acidic dissociation constants (pKa) are linearly related to the stability constants (log K1 2), the more acidic groups forming the less stable complexes. Thus where X = N02 in structure 5.64 then pKa = 8.1 and log K1 2 = 17.2, and where X = OCH3 then pKa = 8.5... [Pg.263]

In a similar investigation of the tautomeric tridentate ligand 2 -hydroxyphenylazo-2-naphthol (5.65 in Scheme 5.17), the first and second acidic dissociation constants (pKa) related to the two hydroxy groups in the parent structure (X = H) were found to be 11.0 and 13.75 respectively. On introduction of an electron-withdrawing substituent (X) the first dissociation constant decreased from 11.0 to 10.55 (X = Cl) or 7.67 (X = N02). The stability constants (log K1 1) of the derived 1 1 complexes were dependent on the metal ion introduced [46], being particularly high for nickel(n) at 19.6 and copper(II) at 23.3. [Pg.264]

The presence of residual unbound transition-metal ions on a dyed substrate is a potential health hazard. Various eco standards quote maximum permissible residual metal levels. These values are a measure of the amount of free metal ions extracted by a perspiration solution [53]. Histidine (5.67) is an essential amino acid that is naturally present as a component of perspiration. It is recognised to play a part in the desorption of metal-complex dyes in perspiration fastness problems and in the fading of such chromogens by the combined effects of perspiration and sunlight. The absorption of histidine by cellophane film from aqueous solution was measured as a function of time of immersion at various pH values. On addition of histidine to an aqueous solution of a copper-complex azo reactive dye, copper-histidine coordination bonds were formed and the stability constants of the species present were determined [54]. Variations of absorption spectra with pH that accompanied coordination of histidine with copper-complex azo dyes in solution were attributable to replacement of the dihydroxyazo dye molecule by the histidine ligand [55]. [Pg.265]

Ion-selective electrodes have been used to determine the stability constants for the complexation of copper II ions with soil fulvic acids [4], Two classes of binding sites were found with conditional stability constants of about 1 xf 06 and 8xl03. [Pg.283]

Tfie electroless deposition of copper is usually done in solutions containing EDTA as a complexing agent. Tfie stability constant for the CuEDTA complex is... [Pg.167]

Trihydroxyglutaric acid forms a 1 1 complex with chromium(iii) which has a stability constant of 0.9 x 10. In the presence of copper(n) a mixed complex is formed and dark bluish-green crystals of Na3[CuCrCioH70i4],5H20 have been isolated. The substituted benzoic acid complexes (60) have been prepared by heating a mixture of CrCL,6H20 and RCgH4C02H in Pr OH. The... [Pg.97]

TABLE 8.2. Stability Constants (log fS and piTa Values)" of Neomycin B in 1 1 Complex Formation with Copper Ion... [Pg.243]


See other pages where Copper complexes stability constants is mentioned: [Pg.274]    [Pg.279]    [Pg.447]    [Pg.665]    [Pg.393]    [Pg.485]    [Pg.238]    [Pg.296]    [Pg.288]    [Pg.51]    [Pg.203]    [Pg.508]    [Pg.871]    [Pg.311]    [Pg.411]    [Pg.23]    [Pg.373]    [Pg.1209]    [Pg.245]    [Pg.176]    [Pg.282]    [Pg.290]    [Pg.333]    [Pg.31]    [Pg.33]    [Pg.243]    [Pg.244]   
See also in sourсe #XX -- [ Pg.680 ]

See also in sourсe #XX -- [ Pg.709 , Pg.710 ]




SEARCH



Complex Stabilization

Complexation stabilization

Complexes constants

Complexing constants

Complexity constant

Copper stability

Copper stability constant

Copper stabilizers

Stability complexes

Stability constant +2 complex

Stability constants

© 2024 chempedia.info