Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes silyls

This work was initiated in 1988 when Villacorta et al.71a reported the asymmetric conjugate addition of a Grignard reagent to 2-cyclohexenone. This study showed that 1,4-adducts with 4-14% ee were obtained in the presence of aminotroponeimine copper complex.713 Enhanced results (74% ee) were obtained by adding HMPA or silyl halides.71b Several other copper complexes were also used for inducing asymmetric conjugate addition reactions. Moderate results were obtained in most cases when THF was used as the solvent and HMPA as the additive. [Pg.477]

The utilization of copper complexes (47) based on bisisoxazolines allows various silyl enol ethers to be added to aldehydes and ketones which possess an adjacent heteroatom e.g. pyruvate esters. An example is shown is Scheme 43[126]. C2-Symmetric Cu(II) complexes have also been used as chiral Lewis acids for the catalysis of enantioselective Michael additions of silylketene acetals to alkylidene malonates[127]. [Pg.32]

Bernadi and Scolastico, and later Evans in a more effective manner, indicated that the enantioselective addition reaction using silyl enol ethers can be catalyzed by Lewis acidic copper(II) cation complexes derived from bisoxazolines [38-40]. In the presence of the copper complex (S,S)-14 (10 mol %), silyl enol ethers derived from thioesters add to alkylidenemalonates or 2-alkenoyloxazo-lidone in high ees (Scheme 12). Bernadi, Scolastico, and Seebach employed a titanium complex derived from TADDOL for the addition of silyl enol ethers to nitroalkenes or 2-cyclopentenone [41-43], although these are stoichiometric reactions. [Pg.157]

The first reaction of this type was reported by Lippard et al. in 1988 the reaction of 2-cyclo-hexenone (3) with Grignard reagents in the presence of the chiral aminotroponeimine copper complex 5 as catalyst gave the 1,4-adducts 4 with 4- 14 % ee [3a]. The selectivity was increased to 74 % ee by addition of hexamethyl-phosphoric triamide (HMPA) and silyl halides [3b]. [Pg.182]

Copper complexes derived from bis(-2,6-dichlorophenyle-dene)-( 15,25)-1,2-diaminocyclohexane (11) catalyze various reactions such as Diels-Alder reaction, aziridination (eq 20), cyclopropanation, and silyl enol ether addition to pyruvate esters. Although the scope of these reactions may be sometimes limited, enantioselectivities are generally high. The same complex (with copper(I) salts) catalyzes the asymmetric insertion of silicon- hydrogen bond into carbenoids. ... [Pg.205]

Cycloaddition Reactions. Bis(oxazoline) copper complexes such as 2 (and its hydrated congener) facilitate the [2 + 2] cycloaddition between silylketenes and glyoxylate/pyruvate esters (eq 18). The reaction is tolerant to various silyl substituents and structural variation on the dicarbonyl reactant. [Pg.422]

For Class B (substitution labile) metal complexes, reequilibration to more thermodynamically favorable coordination modes will be very rapid relative to immobilization. Such behavior is typical of first-row TM complexes. In addition, these ions are usually very oxophilic, so the metal complexes are typically subject to ICC interactions with oxide materials. Since these metal ions are generally immobilized under conditions of thermodynamic control, all pertinent speciation equilibria, including ICC reactions (Section III.B), must be considered in order to understand or predict the outcome of immobilization reactions. It is essential to understand the relevant equilibria if direct imprinting of active site structures is to be successful. The studies of Klonkowski et al. (210-213), for example, underscore this point Sol-gel immobilization of copper complexes bearing silylated amine and ethylenediamine ligands were shown by EPR to result in multiple copper environments, suggesting competition between immobilization and ICC reactions. [Pg.388]

Mechanistic studies have been carried out for neutral and cationic Cu systems [12,13b]. The proposed mechanism for [Cu(Cl)(NHC)j complexes involves the formation of [Cu(0 Bu)(NHC)] by reaction of the chloride complex with the base (Scheme 8.3). [Cu(H)(NHC)j would be formed in situ by o-bond metathesis between the terf-butoxide copper complex and the hydrosilane. The hydride copper complex is highly unstable (observable by NMR) however, it is the active species. Hence, by addition of the hydride species to the carbonyl, a second o-bond metathesis with the silane affords the expected silyl ether and regenerates the active catalyst. In the case of cationic derivatives, dissociation of one NHC occurs as the first step, which is displaced by the fert-butoxide moiety, and is the direct precursor of the active species. The hydrosilane is activated by the nucleophilic NHC, leading to the formation of the silyl ether. The activation of the silane appears to be the decisive step for this transformation. [Pg.225]

Silyl Anion Equivalent. Silylboronic ester 1 reacts as a silyl anion equivalent in the presence of transition metal catalysts. Cyclic and acyclic a,/3-unsaturated carbonyl compounds serve as good acceptors of the silyl groups in conjugate addition of 1 catalyzed by rhodium and copper complexes, giving /3-silylcarbonyl compounds (eq 30). The silylation takes place with high enan-tioselectivity when Rh/(5)-BINAP or Cu/chiral NHC catalysts are used. Three-component coupling of 1, a,/3-unsaturated carbonyl compounds, and aldehydes affords 8-hydroxyketone stereoselec-tively in the presence of a copper catalyst (eq 31). The copper enolate 32 is presumed as an intermediate of the reaction. [Pg.275]

The copper salt (or copper complex) reacts with Me2PhSi-B(Pin) to deliver the corresponding L-Cu(l)-silane. In parallel, the chiral amine forms the iminium intermediate V with the a,p-unsaturated aldehyde. Next, the catalytic cycles merge and the L-Cu-silane complex stereoselectively reacts with the chiral iminium intermediate V via a possible intermediate W to form a C-Si bond in intermediate X. Subsequent hydrolysis of iminium ion X gives the corresponding P-silyl aldehyde product as weU as regenerate the Cu(I)-silane and the chiral catalyst L37 [115]. [Pg.95]

In addition to the boron trifluoride-diethyl ether complex, chlorotrimcthylsilanc also shows a rate accelerating effect on cuprate addition reactions this effect emerges only if tetrahydrofuran is used as the reaction solvent. No significant difference in rate and diastereoselectivity is observed in diethyl ether as reaction solvent when addition of the cuprate, prepared from butyllithium and copper(I) bromide-dimethylsulfide complex, is performed in the presence or absence of chlorotrimethylsilane17. If, however, the reaction is performed in tetrahydrofuran, the reaction rate is accelerated in the presence of chlorotrimethylsilane and the diastereofacial selectivity increases to a ratio of 88 12 17. In contrast to the reaction in diethyl ether, the O-silylated product is predominantly formed in tetrahydrofuran. The alcohol product is only formed to a low extent and showed a diastereomeric ratio of 55 45, which is similar to the result obtained in the absence of chlorotrimethylsilane. This discrepancy indicates that the selective pathway leading to the O-silylated product is totally different and several times faster than the unselective pathway" which leads to the unsilylated alcohol adduct. A slight further increase in the Cram selectivity was achieved when 18-crown-6 was used in order to increase the steric bulk of the reagent. [Pg.27]

The hydrosilylation of carbonyl compounds by EtjSiH catalysed by the copper NHC complexes 65 and 66-67 constitutes a convenient method for the direct synthesis of silyl-protected alcohols (silyl ethers). The catalysts can be generated in situ from the corresponding imidazolium salts, base and CuCl or [Cu(MeCN) ]X", respectively. The catalytic reactions usually occur at room tanperature in THE with very good conversions and exhibit good functional group tolerance. Complex 66, which is more active than 65, allows the reactions to be run under lower silane loadings and is preferred for the hydrosilylation of hindered ketones. The wide scope of application of the copper catalyst [dialkyl-, arylalkyl-ketones, aldehydes (even enoUsable) and esters] is evident from some examples compiled in Table 2.3 [51-53],... [Pg.35]

Pro-chiral pyridine A-oxides have also been used as substrates in asymmetric processes. Jprgensen and co-workers explored the catalytic asymmetric Mukaiyama aldol reaction between ketene silyl acetals 61 and pyridine A-oxide carboxaldehydes 62 <06CEJ3472>. The process is catalyzed by a copper(II)-bis(oxazoline) complex 63 which gave good yields and diastereoselectivities with up to 99% enantiomeric excess. [Pg.324]

The enantioselective lithiation of anisolechromium tricarbonyl was used by Schmalz and Schellhaas in a route towards the natural product (+)-ptilocaulin . In situ hthi-ation and silylation of 410 with ent-h M gave ewf-411 in an optimized 91% ee (reaction carried ont at — 100°C over 10 min, see Scheme 169). A second, substrate-directed lithiation with BuLi alone, formation of the copper derivative and a quench with crotyl bromide gave 420. The planar chirality and reactivity of the chromium complex was then exploited in a nucleophilic addition of dithiane, which generated ptilocaulin precnrsor 421 (Scheme 172). The stereochemistry of componnd 421 has also been used to direct dearomatizing additions, yielding other classes of enones. ... [Pg.589]


See other pages where Copper complexes silyls is mentioned: [Pg.132]    [Pg.782]    [Pg.47]    [Pg.167]    [Pg.561]    [Pg.298]    [Pg.444]    [Pg.1099]    [Pg.598]    [Pg.168]    [Pg.58]    [Pg.1040]    [Pg.58]    [Pg.161]    [Pg.183]    [Pg.32]    [Pg.1299]    [Pg.169]    [Pg.224]    [Pg.225]    [Pg.241]    [Pg.244]    [Pg.24]    [Pg.58]    [Pg.539]    [Pg.320]    [Pg.17]    [Pg.320]    [Pg.88]    [Pg.202]    [Pg.81]    [Pg.130]    [Pg.81]    [Pg.130]   
See also in sourсe #XX -- [ Pg.12 , Pg.47 , Pg.55 ]

See also in sourсe #XX -- [ Pg.12 , Pg.47 , Pg.55 ]




SEARCH



Complexes silyls

Silyl complexes

© 2024 chempedia.info